题解 - [Luogu P7486] 「Stoi2031」彩虹

喜欢我 \(\prod_i\prod_j [i,j]^{[i,j]}\) 吗 😁

题目链接

原始题面

题目背景

你要离开 我知道很简单 你说依赖 是我们的阻碍 就算放开 那能不能别没收我的爱 就当我最后才明白 ——《彩虹》

题目描述

虹是一个喜欢幻想的女孩子。她认为两个正整数 \(i,j\)依赖值\(\operatorname{lcm}(i,j)^{\operatorname{lcm}(i,j)}\). 她定义所有满足 \(l \le i \le r,l \le j \le r\)\(i,j\)依赖值 之积为两个正整数 \(l,r\)阻碍值. 现在她给了你一个正整数 \(n\), 并 \(t\) 次询问你两个满足 \(1 \le l \le r \le n\) 的正整数 \(l,r\)阻碍值 \(ans\bmod{32465177}\)

输入格式

第一行两个正整数 \(t,n\)

接下来 \(t\) 行,每行两个正整数 \(l_i,r_i\), 表示一次询问

输出格式

对于每组询问输出一个整数表示答案

样例 #1

样例输入 #1

1
2
3
4
3 7
1 3
2 3
7 7

样例输出 #1

1
2
3
21072733
12145631
823543

提示

简述版题意

给定 \(l,r\), 求 \(\prod\limits_{i=l}^{r}\prod\limits_{j=l}^{r}\operatorname{lcm}(i,j)^{\operatorname{lcm}(i,j)} \bmod{32465177}\). 多次询问

样例解释

对于第 \(1\) 次询问,\(ans=1^1 \times (2^2)^3 \times (3^3)^3 \times (6^6)^2\), \(ans \bmod{32465177}=21072733\);

对于第 \(2\) 次询问,\(ans=2^2 \times 3^3 \times (6^6)^2\), \(ans \bmod{32465177}=12145631\);

对于第 \(3\) 次询问,\(ans=7^7=823543\)

数据范围

对于 \(30\%\) 的数据,\(1 \le n \le 10^3,t=1\);

对于 \(60\%\) 的数据,\(1 \le n \le 10^5,t=1\);

对于 \(100\%\) 的数据,\(1 \le n \le 10^6,1 \le t \le 10,1 \le l_i \le r_i \le n\)

解题思路

\[ S(n,m)=\prod_{i=1}^n\prod_{j=1}^m[i,j]^{[i,j]} \]

不妨设 \(n\leq m\), 所求即为

\[ \frac{S(r,r)S(l-1,l-1)}{S(l-1,r)^2} \]

推式子

\[ \begin{aligned} S(n,m)&=\prod_{i=1}^n\prod_{j=1}^m[i,j]^{[i,j]}\\ &=\prod_{i=1}^n\prod_{j=1}^m\left(\frac{ij}{(i,j)}\right)^{\frac{ij}{(i,j)}}\\ &=\prod_{d=1}^n\prod_{i=1}^{\lfloor\frac{n}{d}\rfloor}\prod_{j=1}^{\lfloor\frac{m}{d}\rfloor}(ijd)^{ijd[(i,j)=1]}\\ &=\prod_{d=1}^n\prod_{e=1}^{\lfloor\frac{n}{d}\rfloor}\prod_{i=1}^{\lfloor\frac{n}{de}\rfloor}\prod_{j=1}^{\lfloor\frac{m}{de}\rfloor}(ijde^2)^{ijde^2\mu(e)}\\ &\xlongequal{D=de}\prod_{D=1}^n\prod_{e\mid D}\prod_{i=1}^{\lfloor\frac{n}{D}\rfloor}\prod_{j=1}^{\lfloor\frac{m}{D}\rfloor}(ijDe)^{ijDe\mu(e)} \end{aligned} \]

\[ S(n,m)=\prod_{d=1}^n\prod_{e\mid d}\prod_{i=1}^{\lfloor\frac{n}{d}\rfloor}\prod_{j=1}^{\lfloor\frac{m}{d}\rfloor}(ijde)^{ijde\mu(e)} \]

接着推

\[ \begin{aligned} S(n,m)&=\prod_{d=1}^n\prod_{e\mid d}\prod_{i=1}^{\lfloor\frac{n}{d}\rfloor}\prod_{j=1}^{\lfloor\frac{m}{d}\rfloor}(ijde)^{ijde\mu(e)}\\ &=\prod_{d=1}^n\prod_{e\mid d}\left(\prod_{i=1}^{\lfloor\frac{n}{d}\rfloor}\prod_{j=1}^{\lfloor\frac{m}{d}\rfloor}(ij)^{ij}\right)^{de\mu(e)}\prod_{d=1}^n\prod_{e\mid d}(de)^{de\mu(e)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}ij}\\ &\xlongequal[s(n)=\sum_{i=1}^n i=\frac{n(n+1)}{2}]{H(n)=\prod_{i=1}^n i^i}\prod_{d=1}^n\prod_{e\mid d}\left(H\left(\left\lfloor\frac{n}{d}\right\rfloor\right)^{s\left(\left\lfloor\frac{m}{d}\right\rfloor\right)}H\left(\left\lfloor\frac{m}{d}\right\rfloor\right)^{s\left(\left\lfloor\frac{n}{d}\right\rfloor\right)}\right)^{de\mu(e)}\prod_{d=1}^n\prod_{e\mid d}(de)^{de\mu(e)s\left(\left\lfloor\frac{n}{d}\right\rfloor\right)s\left(\left\lfloor\frac{m}{d}\right\rfloor\right)}\\ &\xlongequal[h(n)=(\{\operatorname{id}\mu\}*\{1\})(n)]{g(m,n)=H(n)^{s(m)}H(m)^{s(n)}}\prod_{d=1}^ng\left(\left\lfloor\frac{n}{d}\right\rfloor,\left\lfloor\frac{m}{d}\right\rfloor\right)^{dh(d)}\prod_{d=1}^nd^{dh(d)s\left(\left\lfloor\frac{n}{d}\right\rfloor\right)s\left(\left\lfloor\frac{m}{d}\right\rfloor\right)}\prod_{d=1}^n\prod_{e\mid d}e^{de\mu(e)s\left(\left\lfloor\frac{n}{d}\right\rfloor\right)s\left(\left\lfloor\frac{m}{d}\right\rfloor\right)}\\ &\xlongequal{k(n)=\prod_{e\mid n}e^{e\mu(e)}}\prod_{d=1}^ng\left(\left\lfloor\frac{n}{d}\right\rfloor,\left\lfloor\frac{m}{d}\right\rfloor\right)^{dh(d)}\prod_{d=1}^nd^{dh(d)s\left(\left\lfloor\frac{n}{d}\right\rfloor\right)s\left(\left\lfloor\frac{m}{d}\right\rfloor\right)}\prod_{d=1}^nk(d)^{ds\left(\left\lfloor\frac{n}{d}\right\rfloor\right)s\left(\left\lfloor\frac{m}{d}\right\rfloor\right)}\\ &=\prod_{d=1}^n\left(g\left(\left\lfloor\frac{n}{d}\right\rfloor,\left\lfloor\frac{m}{d}\right\rfloor\right)^{h(d)}\left(d^{h(d)}k(d)\right)^{s\left(\left\lfloor\frac{n}{d}\right\rfloor\right)s\left(\left\lfloor\frac{m}{d}\right\rfloor\right)}\right)^{d}\\ &=\prod_{d=1}^ng\left(\left\lfloor\frac{n}{d}\right\rfloor,\left\lfloor\frac{m}{d}\right\rfloor\right)^{dh(d)}\prod_{d=1}^n\left(d^{dh(d)}k(d)^d\right)^{s\left(\left\lfloor\frac{n}{d}\right\rfloor\right)s\left(\left\lfloor\frac{m}{d}\right\rfloor\right)} \end{aligned} \]

之后预处理一下后整除分块即可

时间复杂度

\(O(n\log n+t\sqrt{n}\log n)\)

代码参考

Show code

Luogu_P7486view raw
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
/*
* @Author: Tifa
* @Description: From <https://github.com/Tiphereth-A/CP-archives>
* !!! ATTENEION: All the context below is licensed under a
* GNU Affero General Public License, Version 3.
* See <https://www.gnu.org/licenses/agpl-3.0.txt>.
*/
#include <bits/stdc++.h>
#include <bits/stdtr1c++.h>
#include <ext/algorithm>
#include <ext/rb_tree>
#include <ext/rope>
#include <ext/vstring.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
template <class Tp>
using vc = std::vector<Tp>;
namespace NdVector {
template <size_t N, class Tp>
struct ndvector: public std::vector<ndvector<N - 1, Tp>> {
static_assert(N > 0, "N should be positive");
using base_tp = ndvector<N - 1, Tp>;
using base = std::vector<base_tp>;
using self = ndvector<N, Tp>;
template <class T, typename... Ts>
ndvector(T &&n, Ts &&...args): base(n, base_tp(args...)) {}
constexpr size_t dim() const { return N; }
template <class T>
void fill(T &&x) {
for (auto &i : *this) i.fill(x);
}
};
template <class Tp>
struct ndvector<1, Tp>: public std::vector<Tp> {
using base = std::vector<Tp>;
using self = ndvector<1, Tp>;
template <class T>
ndvector(T &&n): base(n) {}
constexpr size_t dim() const { return 1; }
template <class T>
void fill(T &&x) {
std::fill(this->begin(), this->end(), x);
}
};
} // namespace NdVector
struct CustomHash {
static constexpr uint64_t splitmix64(uint64_t x) {
x += 0x9e3779b97f4a7c15;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return x ^ (x >> 31);
}
static constexpr size_t append(size_t x, size_t y) {
return x ^ (y >> 1) ^ ((y & 1) << (sizeof(size_t) * 8 - 1));
}
size_t operator()(uint64_t x) const {
static const uint64_t FIXED_RANDOM =
std::chrono::steady_clock::now().time_since_epoch().count();
return splitmix64(x + FIXED_RANDOM);
}
template <class Tp, class Up>
size_t operator()(std::pair<Tp, Up> const &p) const {
return append((*this)(p.first), (*this)(p.second));
}
template <typename... Ts>
size_t operator()(std::tuple<Ts...> const &tp) const {
size_t ret = 0;
std::apply(
[&](Ts const &...targs) { ((ret = append(ret, (*this)(targs))), ...); },
tp);
return ret;
}
template <
class Tp,
std::enable_if_t<std::is_same<decltype(std::declval<Tp>().begin()),
typename Tp::iterator>::value &&
std::is_same<decltype(std::declval<Tp>().end()),
typename Tp::iterator>::value> * = nullptr>
size_t operator()(Tp const &tp) const {
size_t ret = 0;
for (auto &&i : tp) ret = append(ret, (*this)(i));
return ret;
}
};
using u32 = uint32_t;
using i64 = int64_t;
#define for_(i, l, r, vars...) \
for (std::make_signed_t<decltype(l + r)> i = (l), i##end = (r), ##vars; \
i <= i##end; \
++i)
#define for_step_(i, l, r, s, vars...) \
for (std::make_signed_t<decltype(l + r)> i = (l), i##end = (r), ##vars; \
i <= i##end; \
i += s)
template <class Tp>
constexpr auto chkmin(Tp &a, Tp b) -> bool {
return b < a ? a = b, true : false;
}
template <class Tp>
constexpr auto chkmax(Tp &a, Tp b) -> bool {
return a < b ? a = b, true : false;
}
template <class Tp>
constexpr auto ispow2(Tp i) -> bool {
return i && (i & -i) == i;
}
#define TPL_SIZE_(Tuple) std::tuple_size_v<std::remove_reference_t<Tuple>>
namespace tuple_detail_ {
template <std::size_t Begin, class Tuple, std::size_t... Is>
constexpr auto subtuple_impl_(Tuple &&t, std::index_sequence<Is...>) {
return std::make_tuple(std::get<Is + Begin>(t)...);
}
template <class Tuple, class BinOp, std::size_t... Is>
constexpr auto
apply2_impl_(BinOp &&f, Tuple &&lhs, Tuple &&rhs, std::index_sequence<Is...>) {
return std::make_tuple(
std::forward<BinOp>(f)(std::get<Is>(lhs), std::get<Is>(rhs))...);
}
} // namespace tuple_detail_
template <std::size_t Begin, std::size_t Len, class Tuple>
constexpr auto subtuple(Tuple &&t) {
static_assert(Begin <= TPL_SIZE_(Tuple) && Len <= TPL_SIZE_(Tuple) &&
Begin + Len <= TPL_SIZE_(Tuple),
"Out of range");
return tuple_detail_::subtuple_impl_<Begin>(t,
std::make_index_sequence<Len>());
}
template <std::size_t Pos, class Tp, class Tuple>
constexpr auto tuple_push(Tp &&v, Tuple &&t) {
static_assert(TPL_SIZE_(Tuple) > 0, "Pop from empty tuple");
return std::tuple_cat(subtuple<0, Pos>(t),
std::make_tuple(v),
subtuple<Pos, TPL_SIZE_(Tuple) - Pos>(t));
}
template <class Tp, class Tuple>
constexpr auto tuple_push_front(Tp &&v, Tuple &&t) {
return tuple_push<0>(v, t);
}
template <class Tp, class Tuple>
constexpr auto tuple_push_back(Tp &&v, Tuple &&t) {
return tuple_push<TPL_SIZE_(Tuple)>(v, t);
}
template <std::size_t Pos, class Tuple>
constexpr auto tuple_pop(Tuple &&t) {
static_assert(TPL_SIZE_(Tuple) > 0, "Pop from empty tuple");
return std::tuple_cat(subtuple<0, Pos>(t),
subtuple<Pos + 1, TPL_SIZE_(Tuple) - Pos - 1>(t));
}
template <class Tuple>
constexpr auto tuple_pop_front(Tuple &&t) {
return tuple_pop<0>(t);
}
template <class Tuple>
constexpr auto tuple_pop_back(Tuple &&t) {
return tuple_pop<TPL_SIZE_(Tuple) - 1>(t);
}
template <class Tuple, class BinOp>
constexpr auto apply2(BinOp &&f, Tuple &&lhs, Tuple &&rhs) {
return tuple_detail_::apply2_impl_(
f, lhs, rhs, std::make_index_sequence<TPL_SIZE_(Tuple)>());
}
#define OO_PTEQ_(op) \
template <class Tp, class Up> \
constexpr auto operator op(std::pair<Tp, Up> lhs, \
const std::pair<Tp, Up> &rhs) { \
return std::pair<Tp, Up>{lhs.first op rhs.first, \
lhs.second op rhs.second}; \
} \
template <class... Ts> \
constexpr auto operator op(std::tuple<Ts...> const &lhs, \
std::tuple<Ts...> const &rhs) { \
return apply2([](auto &&l, auto &&r) { return l op r; }, lhs, rhs); \
} \
template <class Tp, class Up> \
constexpr std::pair<Tp, Up> &operator op##=(std::pair<Tp, Up> &lhs, \
const std::pair<Tp, Up> &rhs) { \
lhs.first op## = rhs.first; \
lhs.second op## = rhs.second; \
return lhs; \
} \
template <class... Ts> \
constexpr auto operator op##=(std::tuple<Ts...> &lhs, \
const std::tuple<Ts...> &rhs) { \
return lhs = lhs op rhs; \
}
OO_PTEQ_(+)
OO_PTEQ_(-)
OO_PTEQ_(*)
OO_PTEQ_(/)
OO_PTEQ_(%)
OO_PTEQ_(&)
OO_PTEQ_(|)
OO_PTEQ_(^)
OO_PTEQ_(<<)
OO_PTEQ_(>>)
#undef OO_PTEQ_
#undef TPL_SIZE_
template <class Tp, class Up>
std::istream &operator>>(std::istream &is, std::pair<Tp, Up> &p) {
return is >> p.first >> p.second;
}
template <class Tp, class Up>
std::ostream &operator<<(std::ostream &os, const std::pair<Tp, Up> &p) {
return os << p.first << ' ' << p.second;
}
template <typename... Ts>
std::istream &operator>>(std::istream &is, std::tuple<Ts...> &p) {
std::apply([&](Ts &...targs) { ((is >> targs), ...); }, p);
return is;
}
template <typename... Ts>
std::ostream &operator<<(std::ostream &os, const std::tuple<Ts...> &p) {
std::apply(
[&](Ts const &...targs) {
std::size_t n{0};
((os << targs << (++n != sizeof...(Ts) ? " " : "")), ...);
},
p);
return os;
}
template <
class Ch,
class Tr,
class Ct,
std::enable_if_t<std::is_same<decltype(std::declval<Ct>().begin()),
typename Ct::iterator>::value &&
std::is_same<decltype(std::declval<Ct>().end()),
typename Ct::iterator>::value> * = nullptr>
std::basic_ostream<Ch, Tr> &operator<<(std::basic_ostream<Ch, Tr> &os,
const Ct &x) {
if (x.begin() == x.end()) return os;
for (auto it = x.begin(); it != x.end() - 1; ++it) os << *it << ' ';
os << x.back();
return os;
}
const u32 OFFSET = 5;
const u32 N = 1e6 + OFFSET;
const i64 MOD = 32465177;
using namespace std;
namespace MODINT {
constexpr int64_t safe_mod(int64_t x, int64_t m) {
return (x %= m) < 0 ? x + m : x;
}
constexpr std::pair<int64_t, int64_t> invgcd(int64_t a, int64_t b) {
if ((a = safe_mod(a, b)) == 0) return {b, 0};
int64_t s = b, m0 = 0;
for (int64_t q = 0, _ = 0, m1 = 1; a;) {
_ = s - a * (q = s / a);
s = a;
a = _;
_ = m0 - m1 * q;
m0 = m1;
m1 = _;
}
return {s, m0 + (m0 < 0 ? b / s : 0)};
}
template <uint32_t MOD>
class Mint {
static_assert(MOD >= 1);
using self = Mint<MOD>;

protected:
uint32_t v_;

public:
static constexpr uint32_t mod() { return MOD; }
static constexpr self raw(uint32_t v) {
self x;
x.v_ = v;
return x;
}
constexpr Mint(): v_(0) {}
template <class T,
std::enable_if_t<std::is_integral<T>::value &&
std::is_signed<T>::value> * = nullptr>
constexpr Mint(T v): Mint() {
int64_t x = (int64_t)(v % (int64_t)mod());
v_ = (uint32_t)(x + (x < 0 ? mod() : 0));
}
template <class T,
std::enable_if_t<std::is_integral<T>::value &&
std::is_unsigned<T>::value> * = nullptr>
constexpr Mint(T v): v_((uint32_t)(v % mod())) {}
friend std::istream &operator>>(std::istream &is, self &x) {
int64_t xx;
is >> xx;
xx %= mod();
x.v_ = (uint32_t)(xx + (xx < 0 ? mod() : 0));
return is;
}
friend std::ostream &operator<<(std::ostream &os, const self &x) {
return os << x.v_;
}
constexpr const uint32_t &val() const { return v_; }
constexpr explicit operator uint32_t() const { return val(); }
constexpr uint32_t &data() { return v_; }
constexpr self &operator++() {
if (++v_ == mod()) v_ = 0;
return *this;
}
constexpr self &operator--() {
if (!v_) v_ = mod();
--v_;
return *this;
}
constexpr self operator++(int) {
self result = *this;
++*this;
return result;
}
constexpr self operator--(int) {
self result = *this;
--*this;
return result;
}
constexpr self &operator+=(const self &rhs) {
v_ += rhs.v_;
if (v_ >= mod()) v_ -= mod();
return *this;
}
constexpr self &operator-=(const self &rhs) {
v_ -= rhs.v_;
if (v_ >= mod()) v_ += mod();
return *this;
}
constexpr self &operator*=(const self &rhs) {
v_ = (uint32_t)((uint64_t)v_ * rhs.v_ % mod());
return *this;
}
constexpr self &operator/=(const self &rhs) {
return *this = *this * inverse(rhs);
}
constexpr self operator+() const { return *this; }
constexpr self operator-() const { return self() - *this; }
constexpr friend self pow(self x, uint64_t y) {
self res(1);
for (; y; y >>= 1, x *= x)
if (y & 1) res *= x;
return res;
}
constexpr friend self inverse(const self &x) {
auto &&_ = invgcd(x.v_, self::mod());
if (_.first != 1) throw std::runtime_error("Inverse not exist");
return _.second;
}
constexpr friend self operator+(self lhs, const self &rhs) {
return lhs += rhs;
}
constexpr friend self operator-(self lhs, const self &rhs) {
return lhs -= rhs;
}
constexpr friend self operator*(self lhs, const self &rhs) {
return lhs *= rhs;
}
constexpr friend self operator/(self lhs, const self &rhs) {
return lhs /= rhs;
}
constexpr friend bool operator==(const self &lhs, const self &rhs) {
return lhs.v_ == rhs.v_;
}
constexpr friend bool operator!=(const self &lhs, const self &rhs) {
return lhs.v_ != rhs.v_;
}
};
} // namespace MODINT
using mint = MODINT::Mint<MOD>;
using phimint = MODINT::Mint<MOD - 1>;
namespace primes {
vc<u32> vis;
vc<u32> prime;
vc<phimint> h, mu;
void init_prime(u32 n) {
h.resize(n);
mu.resize(n);
vis.resize(n);
mu[1] = h[1] = 1;
for (i64 i = 2; i < n; ++i) {
if (!vis[i]) {
vis[i] = i;
prime.push_back(i);
h[i] = 1 - i;
mu[i] = -1;
}
for (auto &&j : prime) {
i64 x = i * j;
if (x >= n) break;
vis[x] = j;
if (i % j) {
h[x] = h[i] * h[j];
mu[x] = -mu[i];
} else {
h[x] = h[i];
break;
}
}
}
}
} // namespace primes
using primes::h, primes::mu;
constexpr mint qpow(mint a, phimint b_) {
mint res(1);
for (i64 b = b_.val(); b; b >>= 1, a *= a)
if (b & 1) res *= a;
return res;
}
vc<phimint> sumhl;
vc<mint> hh, pdhdkd;
void init_(u32 n) {
sumhl.resize(n);
sumhl[1] = h[1];
for_(i, 2, n - 1) sumhl[i] = sumhl[i - 1] + i * h[i];
hh.resize(n);
hh[1] = 1;
for_(i, 2, n - 1) hh[i] = hh[i - 1] * qpow(i, i);
vc<mint> dhd(n);
dhd[1] = 1;
for_(i, 2, n - 1) dhd[i] = qpow(i, h[i]);
vc<mint> k(n, 1);
for_(i, 2, n - 1) {
mint _ = qpow(i, i * mu[i]);
for_step_(j, i, n - 1, i) k[j] *= _;
}
pdhdkd.resize(n);
pdhdkd[0] = 1;
for_(i, 1, n - 1) pdhdkd[i] = pdhdkd[i - 1] * qpow(dhd[i] * k[i], i);
}
constexpr phimint s(i64 n) { return n * (n + 1) / 2; }
mint calc(i64 n, i64 m) {
if (n > m) swap(n, m);
mint _ = 1;
for (i64 l = 1, r; l <= n; l = r + 1) {
r = min(n / (n / l), m / (m / l));
_ *= qpow(hh[n / l], s(m / l) * (sumhl[r] - sumhl[l - 1])) *
qpow(hh[m / l], s(n / l) * (sumhl[r] - sumhl[l - 1])) *
qpow(pdhdkd[r] / pdhdkd[l - 1], s(n / l) * s(m / l));
}
return _;
}
auto solve([[maybe_unused]] int t_ = 0) -> void {
int t, n;
cin >> t >> n;
primes::init_prime(n + OFFSET);
init_(n + OFFSET);
while (t--) {
int l, r;
cin >> l >> r;
mint _1 = calc(r, r), _2 = calc(l - 1, l - 1), _3 = calc(r, l - 1);
cout << _1 * _2 / (_3 * _3) << '\n';
}
}
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int i_ = 0;
solve(i_);
return 0;
}