题解 - [Luogu P5824] 十二重计数法

题目链接

原始题面

题目背景

组合数学是一门古老而迷人的学科.

传说早在 \(114514\) 年前,一位名为忆哀的神灵来到地球,发现了人类 —— 另一种有智慧的物种.

她觉得这很有趣,为了加速人类文明的发展,她向人间传下了一类计数问题 —— 十二重计数,这也正是组合数学的开端.

而只有搞明白这类问题,才能在组合数学上继续深入.

题目描述

\(n\) 个球和 \(m\) 个盒子,要全部装进盒子里.
还有一些限制条件,那么有多少种方法放球?(与放的先后顺序无关)

限制条件分别如下:

\(\text{I}\): 球之间互不相同,盒子之间互不相同.
\(\text{II}\): 球之间互不相同,盒子之间互不相同,每个盒子至多装一个球.
\(\text{III}\): 球之间互不相同,盒子之间互不相同,每个盒子至少装一个球.

\(\text{IV}\): 球之间互不相同,盒子全部相同.
\(\text{V}\): 球之间互不相同,盒子全部相同,每个盒子至多装一个球.
\(\text{VI}\): 球之间互不相同,盒子全部相同,每个盒子至少装一个球.

\(\text{VII}\): 球全部相同,盒子之间互不相同.
\(\text{VIII}\): 球全部相同,盒子之间互不相同,每个盒子至多装一个球.
\(\text{IX}\): 球全部相同,盒子之间互不相同,每个盒子至少装一个球.

\(\text{X}\): 球全部相同,盒子全部相同.
\(\text{XI}\): 球全部相同,盒子全部相同,每个盒子至多装一个球.
\(\text{XII}\): 球全部相同,盒子全部相同,每个盒子至少装一个球.

由于答案可能很大,所以要对 \(998244353\) 取模.

输入格式

仅一行两个正整数 \(n,m\)

输出格式

输出十二行,每行一个整数,对应每一种限制条件的答案.

样例 #1

样例输入 #1

1
13 6

样例输出 #1

1
2
3
4
5
6
7
8
9
10
11
12
83517427
0
721878522
19628064
0
9321312
8568
0
792
71
0
14

提示

【数据范围】
对于 \(100\%\) 的数据,\(1\le n,m \le 2\times 10^5\).

orz \(\mathsf E \color{red}\mathsf{ntropyIncreaser}\)

解题思路

不难发现答案即为 \(m^n\)

不难发现答案即为 \(m^{\underline{n}}\)

考虑二项式反演

  • \(f(n,m)\)\(n\) 个球和 \(m\) 个盒子,球之间互不相同,盒子之间互不相同,每个盒子至少装一个球的方案数
  • \(g(n,m)\)\(n\) 个球和 \(m\) 个盒子,球之间互不相同,盒子之间互不相同的方案数

\[ \begin{aligned} &m^n=g(n,m)=\sum_{i=0}^m\binom{m}{i}f(n,i)\\ \implies &f(n,m)=\sum_{i=0}^m\binom{m}{i}(-1)^{m-i}g(n,i)=\sum_{i=0}^m\binom{m}{i}(-1)^{m-i}i^n \end{aligned} \]

考虑第二类 Stirling 数,不难发现答案为

\[ \sum_{i=0}^m{n \brace i} \]

使用卷积可以快速求出答案,具体而言,令

  • \[ f(x)=\sum_{i=0}^{\infty}\frac{i^n}{i!}x^i \]
  • \[ g(x)=\sum_{i=0}^{\infty}\frac{(-1)^i}{i!}x^i \]

\[ h(x)=f(x)g(x)=\sum_{i=0}^{\infty}x^i\sum_{j=0}^i\frac{(-1)^{i-j}j^n}{j!(i-j)!}=\sum_{i=0}^{\infty}{n\brace i}x^i \]

不难发现当 \(m<n\) 时答案为 \(0\), 否则为 \(1\)

考虑第二类 Stirling 数,不难发现答案为 \({n \brace m}\)

可以和 Ⅳ 一起求

考虑隔板法,不难发现答案为 \(\binom{n+m-1}{m-1}\)

不难发现答案即为 \(\binom{m}{n}\)

考虑隔板法,不难发现答案为 \(\binom{n-1}{m-1}\)

\(f(n,m)\) 为所求,则

\[ f(n,m)=f(n,m-1)+f(n-m,m) \]

考虑 OGF

\[ \begin{aligned} &\begin{aligned} F_m(x)&=\sum_{i=0}^{\infty}f(i,m)x^i\\ &=F_{m-1}(x)+x^m F_m(x) \end{aligned}\\ \implies& F_m(x)=\frac{1}{1-x^m}F_{m-1}(x)\\ \implies& F_m(x)=\prod_{i=1}^{\infty}\frac{1}{1-x^i}\\ \implies& \ln F_m(x)=-\sum_{i=1}^{\infty}\ln(1-x^i)\\ \implies& \ln F_m(x)=\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} \frac{x^{ij}}{j}\\ \implies& F_m(x)=\exp\left(\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} \frac{x^{ij}}{j}\right) \end{aligned} \]

同 Ⅴ

类似 Ⅹ, 答案为 \(f(n-m,m)\)

代码参考

Show code

Luogu_P5824view raw
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
/*
* @Author: Tifa
* @Description: From <https://github.com/Tiphereth-A/CP-archives>
* !!! ATTENEION: All the context below is licensed under a
* GNU Affero General Public License, Version 3.
* See <https://www.gnu.org/licenses/agpl-3.0.txt>.
*/
#include <bits/stdc++.h>
#include <bits/stdtr1c++.h>
#include <ext/algorithm>
#include <ext/rb_tree>
#include <ext/rope>
#include <ext/vstring.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
namespace NdVector {
template <size_t N, class Tp>
struct ndvector: public std::vector<ndvector<N - 1, Tp>> {
static_assert(N > 0, "N should be positive");
using base_tp = ndvector<N - 1, Tp>;
using base = std::vector<base_tp>;
using self = ndvector<N, Tp>;
template <class T, typename... Ts>
ndvector(T &&n, Ts &&...args): base(n, base_tp(args...)) {}
constexpr size_t dim() const { return N; }
template <class T>
void fill(T &&x) {
for (auto &i : *this) i.fill(x);
}
};
template <class Tp>
struct ndvector<1, Tp>: public std::vector<Tp> {
using base = std::vector<Tp>;
using self = ndvector<1, Tp>;
template <class T>
ndvector(T &&n): base(n) {}
constexpr size_t dim() const { return 1; }
template <class T>
void fill(T &&x) {
std::fill(this->begin(), this->end(), x);
}
};
} // namespace NdVector
struct CustomHash {
static constexpr uint64_t splitmix64(uint64_t x) {
x += 0x9e3779b97f4a7c15;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return x ^ (x >> 31);
}
static constexpr size_t append(size_t x, size_t y) {
return x ^ (y >> 1) ^ ((y & 1) << (sizeof(size_t) * 8 - 1));
}
size_t operator()(uint64_t x) const {
static const uint64_t FIXED_RANDOM =
std::chrono::steady_clock::now().time_since_epoch().count();
return splitmix64(x + FIXED_RANDOM);
}
template <class Tp, class Up>
size_t operator()(std::pair<Tp, Up> const &p) const {
return append((*this)(p.first), (*this)(p.second));
}
template <typename... Ts>
size_t operator()(std::tuple<Ts...> const &tp) const {
size_t ret = 0;
std::apply(
[&](Ts const &...targs) { ((ret = append(ret, (*this)(targs))), ...); },
tp);
return ret;
}
template <
class Tp,
std::enable_if_t<std::is_same<decltype(std::declval<Tp>().begin()),
typename Tp::iterator>::value &&
std::is_same<decltype(std::declval<Tp>().end()),
typename Tp::iterator>::value> * = nullptr>
size_t operator()(Tp const &tp) const {
size_t ret = 0;
for (auto &&i : tp) ret = append(ret, (*this)(i));
return ret;
}
};
using u32 = uint32_t;
using i64 = int64_t;
#define for_(i, l, r, vars...) \
for (std::make_signed_t<decltype(l + r)> i = (l), i##end = (r), ##vars; \
i <= i##end; \
++i)
#define rfor_(i, r, l, vars...) \
for (std::make_signed_t<decltype(r - l)> i = (r), i##end = (l), ##vars; \
i >= i##end; \
--i)
template <class Tp>
constexpr auto chkmin(Tp &a, Tp b) -> bool {
return b < a ? a = b, true : false;
}
template <class Tp>
constexpr auto chkmax(Tp &a, Tp b) -> bool {
return a < b ? a = b, true : false;
}
template <class Tp>
constexpr auto ispow2(Tp i) -> bool {
return i && (i & -i) == i;
}
#define TPL_SIZE_(Tuple) std::tuple_size_v<std::remove_reference_t<Tuple>>
namespace tuple_detail_ {
template <std::size_t Begin, class Tuple, std::size_t... Is>
constexpr auto subtuple_impl_(Tuple &&t, std::index_sequence<Is...>) {
return std::make_tuple(std::get<Is + Begin>(t)...);
}
template <class Tuple, class BinOp, std::size_t... Is>
constexpr auto
apply2_impl_(BinOp &&f, Tuple &&lhs, Tuple &&rhs, std::index_sequence<Is...>) {
return std::make_tuple(
std::forward<BinOp>(f)(std::get<Is>(lhs), std::get<Is>(rhs))...);
}
} // namespace tuple_detail_
template <std::size_t Begin, std::size_t Len, class Tuple>
constexpr auto subtuple(Tuple &&t) {
static_assert(Begin <= TPL_SIZE_(Tuple) && Len <= TPL_SIZE_(Tuple) &&
Begin + Len <= TPL_SIZE_(Tuple),
"Out of range");
return tuple_detail_::subtuple_impl_<Begin>(t,
std::make_index_sequence<Len>());
}
template <std::size_t Pos, class Tp, class Tuple>
constexpr auto tuple_push(Tp &&v, Tuple &&t) {
static_assert(TPL_SIZE_(Tuple) > 0, "Pop from empty tuple");
return std::tuple_cat(subtuple<0, Pos>(t),
std::make_tuple(v),
subtuple<Pos, TPL_SIZE_(Tuple) - Pos>(t));
}
template <class Tp, class Tuple>
constexpr auto tuple_push_front(Tp &&v, Tuple &&t) {
return tuple_push<0>(v, t);
}
template <class Tp, class Tuple>
constexpr auto tuple_push_back(Tp &&v, Tuple &&t) {
return tuple_push<TPL_SIZE_(Tuple)>(v, t);
}
template <std::size_t Pos, class Tuple>
constexpr auto tuple_pop(Tuple &&t) {
static_assert(TPL_SIZE_(Tuple) > 0, "Pop from empty tuple");
return std::tuple_cat(subtuple<0, Pos>(t),
subtuple<Pos + 1, TPL_SIZE_(Tuple) - Pos - 1>(t));
}
template <class Tuple>
constexpr auto tuple_pop_front(Tuple &&t) {
return tuple_pop<0>(t);
}
template <class Tuple>
constexpr auto tuple_pop_back(Tuple &&t) {
return tuple_pop<TPL_SIZE_(Tuple) - 1>(t);
}
template <class Tuple, class BinOp>
constexpr auto apply2(BinOp &&f, Tuple &&lhs, Tuple &&rhs) {
return tuple_detail_::apply2_impl_(
f, lhs, rhs, std::make_index_sequence<TPL_SIZE_(Tuple)>());
}
#define OO_PTEQ_(op) \
template <class Tp, class Up> \
constexpr auto operator op(std::pair<Tp, Up> lhs, \
const std::pair<Tp, Up> &rhs) { \
return std::pair<Tp, Up>{lhs.first op rhs.first, \
lhs.second op rhs.second}; \
} \
template <class... Ts> \
constexpr auto operator op(std::tuple<Ts...> const &lhs, \
std::tuple<Ts...> const &rhs) { \
return apply2([](auto &&l, auto &&r) { return l op r; }, lhs, rhs); \
} \
template <class Tp, class Up> \
constexpr std::pair<Tp, Up> &operator op##=(std::pair<Tp, Up> &lhs, \
const std::pair<Tp, Up> &rhs) { \
lhs.first op## = rhs.first; \
lhs.second op## = rhs.second; \
return lhs; \
} \
template <class... Ts> \
constexpr auto operator op##=(std::tuple<Ts...> &lhs, \
const std::tuple<Ts...> &rhs) { \
return lhs = lhs op rhs; \
}
OO_PTEQ_(+)
OO_PTEQ_(-)
OO_PTEQ_(*)
OO_PTEQ_(/)
OO_PTEQ_(%)
OO_PTEQ_(&)
OO_PTEQ_(|)
OO_PTEQ_(^)
OO_PTEQ_(<<)
OO_PTEQ_(>>)
#undef OO_PTEQ_
#undef TPL_SIZE_
template <class Tp, class Up>
std::istream &operator>>(std::istream &is, std::pair<Tp, Up> &p) {
return is >> p.first >> p.second;
}
template <class Tp, class Up>
std::ostream &operator<<(std::ostream &os, const std::pair<Tp, Up> &p) {
return os << p.first << ' ' << p.second;
}
template <typename... Ts>
std::istream &operator>>(std::istream &is, std::tuple<Ts...> &p) {
std::apply([&](Ts &...targs) { ((is >> targs), ...); }, p);
return is;
}
template <typename... Ts>
std::ostream &operator<<(std::ostream &os, const std::tuple<Ts...> &p) {
std::apply(
[&](Ts const &...targs) {
std::size_t n{0};
((os << targs << (++n != sizeof...(Ts) ? " " : "")), ...);
},
p);
return os;
}
template <
class Ch,
class Tr,
class Ct,
std::enable_if_t<std::is_same<decltype(std::declval<Ct>().begin()),
typename Ct::iterator>::value &&
std::is_same<decltype(std::declval<Ct>().end()),
typename Ct::iterator>::value> * = nullptr>
std::basic_ostream<Ch, Tr> &operator<<(std::basic_ostream<Ch, Tr> &os,
const Ct &x) {
if (x.begin() == x.end()) return os;
for (auto it = x.begin(); it != x.end() - 1; ++it) os << *it << ' ';
os << x.back();
return os;
}
const u32 OFFSET = 5;
const u32 N = 4e5 + OFFSET;
const u32 M = 2e5 + OFFSET;
const i64 MOD = 1e9 + 7;
using namespace std;
namespace Common {
namespace MODINT {
constexpr int64_t safe_mod(int64_t x, int64_t m) {
return (x %= m) < 0 ? x + m : x;
}
constexpr std::pair<int64_t, int64_t> invgcd(int64_t a, int64_t b) {
if ((a = safe_mod(a, b)) == 0) return {b, 0};
int64_t s = b, m0 = 0;
for (int64_t q = 0, _ = 0, m1 = 1; a;) {
_ = s - a * (q = s / a);
s = a;
a = _;
_ = m0 - m1 * q;
m0 = m1;
m1 = _;
}
return {s, m0 + (m0 < 0 ? b / s : 0)};
}
template <uint32_t MOD>
class Mint {
static_assert(MOD >= 1);
using self = Mint<MOD>;

protected:
uint32_t v_;

public:
static constexpr uint32_t mod() { return MOD; }
static constexpr self raw(uint32_t v) {
self x;
x.v_ = v;
return x;
}
constexpr Mint(): v_(0) {}
template <class T,
std::enable_if_t<std::is_integral<T>::value &&
std::is_signed<T>::value> * = nullptr>
constexpr Mint(T v): Mint() {
int64_t x = (int64_t)(v % (int64_t)mod());
v_ = (uint32_t)(x + (x < 0 ? mod() : 0));
}
template <class T,
std::enable_if_t<std::is_integral<T>::value &&
std::is_unsigned<T>::value> * = nullptr>
constexpr Mint(T v): v_((uint32_t)(v % mod())) {}
friend std::istream &operator>>(std::istream &is, self &x) {
int64_t xx;
is >> xx;
xx %= mod();
x.v_ = (uint32_t)(xx + (xx < 0 ? mod() : 0));
return is;
}
friend std::ostream &operator<<(std::ostream &os, const self &x) {
return os << x.v_;
}
constexpr const uint32_t &val() const { return v_; }
constexpr explicit operator uint32_t() const { return val(); }
constexpr uint32_t &data() { return v_; }
constexpr self &operator++() {
if (++v_ == mod()) v_ = 0;
return *this;
}
constexpr self &operator--() {
if (!v_) v_ = mod();
--v_;
return *this;
}
constexpr self operator++(int) {
self result = *this;
++*this;
return result;
}
constexpr self operator--(int) {
self result = *this;
--*this;
return result;
}
constexpr self &operator+=(const self &rhs) {
v_ += rhs.v_;
if (v_ >= mod()) v_ -= mod();
return *this;
}
constexpr self &operator-=(const self &rhs) {
v_ -= rhs.v_;
if (v_ >= mod()) v_ += mod();
return *this;
}
constexpr self &operator*=(const self &rhs) {
v_ = (uint32_t)((uint64_t)v_ * rhs.v_ % mod());
return *this;
}
constexpr self &operator/=(const self &rhs) {
return *this = *this * inverse(rhs);
}
constexpr self operator+() const { return *this; }
constexpr self operator-() const { return self() - *this; }
constexpr friend self pow(self x, uint64_t y) {
self res(1);
for (; y; y >>= 1, x *= x)
if (y & 1) res *= x;
return res;
}
constexpr friend self inverse(const self &x) {
auto &&_ = invgcd(x.v_, self::mod());
if (_.first != 1) throw std::runtime_error("Inverse not exist");
return _.second;
}
constexpr friend self operator+(self lhs, const self &rhs) {
return lhs += rhs;
}
constexpr friend self operator-(self lhs, const self &rhs) {
return lhs -= rhs;
}
constexpr friend self operator*(self lhs, const self &rhs) {
return lhs *= rhs;
}
constexpr friend self operator/(self lhs, const self &rhs) {
return lhs /= rhs;
}
constexpr friend bool operator==(const self &lhs, const self &rhs) {
return lhs.v_ == rhs.v_;
}
constexpr friend bool operator!=(const self &lhs, const self &rhs) {
return lhs.v_ != rhs.v_;
}
};
} // namespace MODINT
using mint = MODINT::Mint<998244353>;
vector<mint> fact, inv_fact;
void init_fact(int64_t n = N) {
fact.resize(n + 1);
inv_fact.resize(n + 1);
fact[0] = fact[1] = inv_fact[0] = inv_fact[1] = 1;
for_(i, 2, n) fact[i] = fact[i - 1] * i;
inv_fact.back() = 1 / fact.back();
rfor_(i, n - 1, 2) inv_fact[i] = inv_fact[i + 1] * (i + 1);
}
constexpr mint qpow(mint a, i64 b) {
mint res(1);
for (; b; b >>= 1, a *= a)
if (b & 1) res *= a;
return res;
}
auto inv_linear_gen = [](size_t n) -> std::vector<mint> {
vector<mint> inv(n + 1, 1);
for (int i = 2; i <= n; ++i)
inv[i] = (mint::mod() - mint::mod() / i) * inv[mint::mod() % i];
return inv;
};
vector<mint> inv = inv_linear_gen(N);
constexpr mint mPn(int m, int n) {
return m < n || n < 0 ? 0 : fact[m] * inv_fact[m - n];
}
constexpr mint mCn(int m, int n) {
return m < n || n < 0 ? 0 : mPn(m, n) * inv_fact[n];
}
vector<mint> pows;
void init_pows(int64_t m, int64_t n) {
pows.resize(m + 1);
for_(i, 0, m) pows[i] = qpow(i, n);
}
namespace Polynomial {
using data_t = int32_t;
using ldata_t = int64_t;
const size_t N = 1 << 20 | 500;
const data_t MOD = 998244353;
using udata_t = std::make_unsigned<data_t>::type;
using ludata_t = std::make_unsigned<ldata_t>::type;
const size_t DEG_LIMIT = N << 1;
namespace Helper {
constexpr ldata_t qpow(ldata_t a, ldata_t b, const ldata_t &mod) {
ldata_t res(1);
for (; b; b >>= 1, (a *= a) %= mod)
if (b & 1) (res *= a) %= mod;
return res;
}
constexpr ldata_t inverse(ldata_t n, const ldata_t &mod) {
ldata_t b = mod, m0 = 0;
for (ldata_t q = 0, _ = 0, m1 = 1; n;) {
_ = b - n * (q = b / n);
b = n;
n = _;
_ = m0 - m1 * q;
m0 = m1;
m1 = _;
}
return (m0 + (m0 < 0 ? mod / b : 0)) % mod;
}
constexpr data_t proot_impl_(data_t m) {
if (m == 2) return 1;
if (m == 3 || m == 5) return 2;
if (m == 104857601 || m == 167772161 || m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353 || m == 1004535809) return 3;
data_t divs[20] = {2};
data_t cnt = 1, x = (m - 1) / 2;
while (!(x & 1)) x >>= 1;
for (data_t i = 3; (ldata_t)i * i <= x; i += 2)
if (x % i == 0) {
divs[++cnt] = i;
while (x % i == 0) x /= i;
}
if (x > 1) divs[++cnt] = x;
for (data_t g = 2;; ++g) {
bool ok = true;
for (data_t i = 0; i < cnt; ++i)
if (qpow(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
if (ok) return g;
}
}
template <data_t M>
constexpr data_t proot = proot_impl_(M);
constexpr int legendre_symbol(uint64_t a, uint64_t p) noexcept {
if (a == 0) return 0;
int s = 1, _ctz = 0;
while (a > 1) {
if (a == p || a == 0 || p < 2) return 0;
_ctz = __builtin_ctzll(a);
if (((p - 1) & 7) && ((p + 1) & 7) && (_ctz & 1)) s = -s;
if ((a >>= _ctz) == 1) break;
if ((((p - 1) & 7) * (a - 1)) & 7) s = -s;
p %= a;
auto _ = a;
a = p;
p = _;
}
return s;
}
struct GaussInt {
data_t real, imag;
const data_t i_sqr, mod;
constexpr GaussInt &operator*=(GaussInt rhs) {
const ldata_t _r = real, _i = imag;
real =
(data_t)((_r * rhs.real % mod + i_sqr * _i % mod * rhs.imag % mod) % mod);
imag = (data_t)((_i * rhs.real % mod + _r * rhs.imag % mod) % mod);
return *this;
}
};
std::mt19937 eng__(time(nullptr));
data_t quad_residue(data_t n, data_t p) {
if (n == 0 || n == 1 || n == p - 1) return n;
if (legendre_symbol(n, p) != 1) return -1;
std::uniform_int_distribution<ldata_t> u(2, p - 1);
ldata_t a = u(eng__);
while (legendre_symbol((a * a % p + p - n) % p, p) == 1) a = u(eng__);
data_t ret = [](GaussInt a, udata_t b) {
GaussInt res{1, 0, a.i_sqr, a.mod};
for (; b; b >>= 1, a *= a)
if (b & 1) res *= a;
return res.real;
}(GaussInt{(data_t)a, 1, (data_t)(a * a % p + p - n) % p, p}, (p + 1) / 2);
return std::min(ret, p - ret);
}
template <size_t DEG_LIMIT, data_t MOD>
class INV_ {
protected:
data_t data[DEG_LIMIT];

public:
constexpr INV_() {
data[0] = 0;
data[1] = 1;
for (size_t i = 2; i < DEG_LIMIT; ++i)
data[i] = (data_t)((ldata_t)data[MOD % i] * (MOD - MOD / i) % MOD);
}
constexpr const data_t &operator[](size_t idx) const { return data[idx]; }
};
template <size_t DEG_LIMIT, data_t MOD>
class NTT_ {
static constexpr data_t G = proot<MOD>, IG = inverse(G, MOD);

protected:
data_t root[DEG_LIMIT];
size_t rsz_;
ludata_t f[DEG_LIMIT], w[DEG_LIMIT];
constexpr void root_init(size_t n) {
if (rsz_ == n) return;
rsz_ = n;
for (size_t i = 0; i < n; ++i)
root[i] = (root[i >> 1] >> 1) | (data_t)((i & 1) * (n >> 1));
}

public:
constexpr NTT_() = default;
constexpr void operator()(data_t *g, size_t n, bool inv = false) {
root_init(n);
w[0] = 1;
for (size_t i = 0; i < n; ++i)
f[i] = (((ldata_t)MOD << 5) + g[root[i]]) % MOD;
for (size_t l = 1; l < n; l <<= 1) {
ludata_t tG = qpow(inv ? IG : G, (MOD - 1) / (l + l), MOD);
for (size_t i = 1; i < l; ++i) w[i] = w[i - 1] * tG % MOD;
for (size_t k = 0; k < n; k += l + l)
for (size_t p = 0; p < l; ++p) {
ldata_t _ = w[p] * f[k | l | p] % MOD;
f[k | l | p] = f[k | p] + (MOD - _);
f[k | p] += _;
}
if (l == (1 << 10))
for (size_t i = 0; i < n; ++i) f[i] %= MOD;
}
if (inv) {
ludata_t in = inverse(n, MOD);
for (size_t i = 0; i < n; ++i) g[i] = (data_t)(f[i] % MOD * in % MOD);
} else
for (size_t i = 0; i < n; ++i) g[i] = (data_t)(f[i] % MOD);
}
};
const INV_<DEG_LIMIT, MOD> inv;
NTT_<DEG_LIMIT, MOD> NTT;
} // namespace Helper
using Helper::inverse;
using Helper::NTT;
using Helper::qpow;
class Poly {
protected:
std::vector<data_t> data;
template <class Fodd, class Feven>
void expand_base__(
Poly &ans, size_t n, data_t val1, Fodd &&fodd, Feven &&feven) const {
if (n == 1) {
ans.data.push_back(val1);
return;
}
if (n & 1) {
expand_base__(ans, n - 1, val1, fodd, feven);
fodd(ans, n);
return;
}
expand_base__(ans, n / 2, val1, fodd, feven);
feven(ans, n);
}
void inv_(Poly &ans, size_t n) const {
expand_base__(
ans,
n,
(data_t)inverse(data[0], MOD),
[this](Poly &ans, size_t n) -> void {
--n;
ldata_t _ = 0;
for (size_t i = 0; i < n; ++i)
_ = (_ + (ldata_t)ans[i] * data[n - i]) % MOD;
ans.data.push_back((data_t)(_ * inverse(MOD - data[0], MOD) % MOD));
},
[this](Poly &ans, size_t n) -> void {
Poly sA = *this;
sA.resize(n);
ans = ans * 2 - (ans * ans * sA).resize(n);
});
}
void exp_(Poly &ans, size_t n) const {
expand_base__(
ans,
n,
1,
[this](Poly &ans, size_t n) -> void {
n -= 2;
ldata_t _ = 0;
for (size_t i = 0; i <= n; ++i)
_ = (_ + (i + 1) * data[i + 1] % MOD * ans[n - i] % MOD) % MOD;
ans.data.push_back((data_t)(_ * Helper::inv[n + 1] % MOD));
},
[this](Poly &ans, size_t n) -> void {
Poly ans_log = ans;
ans_log.resize(n);
ans_log.do_log();
for (size_t i = 0; i < ans_log.size(); ++i)
ans_log[i] = (MOD + data[i] - ans_log[i]) % MOD;
++ans_log[0];
(ans *= ans_log).resize(n);
});
}

public:
explicit Poly(decltype(DEG_LIMIT) sz = 0): data(std::min(DEG_LIMIT, sz)) {}
explicit Poly(const std::initializer_list<data_t> &v): data(v) {}
explicit Poly(const std::vector<data_t> &v): data(v) {}
friend std::istream &operator>>(std::istream &is, Poly &poly) {
for (auto &val : poly.data) is >> val;
return is;
}
friend std::ostream &operator<<(std::ostream &os, const Poly &poly) {
for (size_t i = 1; i < poly.size(); ++i) os << poly[i - 1] << ' ';
return os << poly.data.back();
}
data_t &operator[](size_t x) { return data[x]; }
const data_t &operator[](size_t x) const { return data[x]; }
size_t size() const { return data.size(); }
Poly &resize(size_t size) {
data.resize(size);
return *this;
}
Poly &operator*=(const data_t &c) {
for (data_t &val : data) val = (data_t)((ldata_t)val * c % MOD);
return *this;
}
friend Poly operator*(Poly poly, const data_t &c) { return poly *= c; }
friend Poly operator*(const data_t &c, Poly poly) { return poly *= c; }
#define OOCR_(op, ...) \
Poly &operator op##=(const Poly &rhs) __VA_ARGS__ friend Poly operator op( \
Poly lhs, const Poly &rhs) { \
return lhs op## = rhs; \
}
#define OO_(op, ...) \
Poly &operator op##=(Poly rhs) __VA_ARGS__ friend Poly operator op( \
Poly lhs, const Poly &rhs) { \
return lhs op## = rhs; \
}
OOCR_(+, {
resize(std::max(size(), rhs.size()));
for (size_t i = 0; i < rhs.size(); ++i) {
data[i] += rhs[i];
data[i] -= data[i] >= MOD ? MOD : 0;
}
return *this;
})
OOCR_(-, {
resize(std::max(size(), rhs.size()));
for (size_t i = 0; i < rhs.size(); ++i) {
data[i] += MOD - rhs[i];
data[i] -= data[i] >= MOD ? MOD : 0;
}
return *this;
})
OOCR_(*, {
static data_t a__[N << 1], b__[N << 1];
std::copy(data.begin(), data.end(), a__);
std::copy(rhs.data.begin(), rhs.data.end(), b__);
size_t _sz = size();
data.clear();
resize(_sz + rhs.size() - 1);
size_t n =
(size_t)(1) << (size_t)std::max(1., std::ceil(std::log2(size())));
NTT(a__, n);
NTT(b__, n);
for (size_t i = 0; i < n; ++i)
a__[i] = (data_t)((ldata_t)a__[i] * b__[i] % MOD);
NTT(a__, n, true);
std::copy(a__, a__ + size(), data.begin());
memset(a__, 0, sizeof(a__[0]) * (n));
memset(b__, 0, sizeof(b__[0]) * (n));
return *this;
})
OO_(/, {
size_t n_ = size(), m_ = rhs.size();
std::reverse(data.begin(), data.end());
std::reverse(rhs.data.begin(), rhs.data.end());
rhs.resize(n_ - m_ + 1);
*this *= rhs.do_inverse();
resize(n_ - m_ + 1);
std::reverse(data.begin(), data.end());
return *this;
})
#undef OO_
#undef OOCR_
#define FUNC_(name, ...) \
Poly &do_##name() __VA_ARGS__ friend Poly name(Poly poly) { \
return poly.do_##name(); \
}
#define FUNCP2_(name, type1, var1, type2, var2, ...) \
Poly &do_##name(type1 var1, type2 var2) __VA_ARGS__ friend Poly name( \
Poly poly, type1 var1, type2 var2) { \
return poly.do_##name(var1, var2); \
}
FUNC_(inverse, {
Poly ret;
inv_(ret, size());
return *this = ret;
})
FUNC_(derivative, {
for (size_t i = 1; i < size(); ++i)
data[i - 1] = (data_t)((ldata_t)data[i] * i % MOD);
data.pop_back();
return *this;
})
FUNC_(integral, {
data.push_back(0);
for (size_t i = size() - 1; i; --i)
data[i] = (data_t)((ldata_t)data[i - 1] * Helper::inv[i] % MOD);
data.front() = 0;
return *this;
})
FUNC_(log, {
size_t sz_ = size();
*this = (derivative(*this) * inverse(*this)).do_integral();
resize(sz_);
return *this;
})
FUNC_(exp, {
Poly ret;
exp_(ret, size());
return *this = ret;
})
#undef FUNC_
#undef FUNCP2_
};
} // namespace Polynomial
using Polynomial::Poly;
Poly dgf_stirling2;
void init_stirling2(int64_t m, int64_t n) {
Poly a(m + 1), b(m + 1);
for_(i, 0, m) a[i] = (pows[i] * inv_fact[i]).val();
for_(i, 0, m) b[i] = (((i & 1) ? -1 : 1) * inv_fact[i]).val();
(dgf_stirling2 = a * b).resize(m + 1);
}
} // namespace Common
namespace solver1 {
using namespace Common;
mint main(i64 n, i64 m) { return qpow(m, n); }
} // namespace solver1
namespace solver2 {
using namespace Common;
mint main(i64 n, i64 m) { return mPn(m, n); }
} // namespace solver2
namespace solver3 {
using namespace Common;
mint main(i64 n, i64 m) {
mint ans = 0;
int f = m & 1;
for_(i, 1, m) {
f ? (ans += mCn(m, i) * pows[i]) : (ans -= mCn(m, i) * pows[i]);
f ^= 1;
}
return ans;
}
} // namespace solver3
namespace solver4 {
using namespace Common;
mint main(i64 n, i64 m) {
mint ans = 0;
for_(i, 0, m) ans += dgf_stirling2[i];
return ans;
}
} // namespace solver4
namespace solver5 {
using namespace Common;
mint main(i64 n, i64 m) { return m >= n; }
} // namespace solver5
namespace solver6 {
using namespace Common;
mint main(i64 n, i64 m) { return dgf_stirling2[m]; }
} // namespace solver6
namespace solver7 {
using namespace Common;
mint main(i64 n, i64 m) { return mCn(m + n - 1, m - 1); }
} // namespace solver7
namespace solver8 {
using namespace Common;
mint main(i64 n, i64 m) { return mCn(m, n); }
} // namespace solver8
namespace solver9 {
using namespace Common;
mint main(i64 n, i64 m) { return mCn(n - 1, m - 1); }
} // namespace solver9
namespace solver10 {
using namespace Common;
Poly f;
void init_f(int64_t m, int64_t n) {
f.resize(n + 1);
for_(i, 1, m)
for_(k, 1, n / i) f[i * k] = (f[i * k] + inv[k]).val();
f.do_exp();
}
mint main(i64 n, i64 m) { return f[n]; }
} // namespace solver10
namespace solver11 {
using namespace Common;
mint main(i64 n, i64 m) { return m >= n; }
} // namespace solver11
namespace solver12 {
using namespace Common;
mint main(i64 n, i64 m) { return n >= m ? solver10::f[n - m] : 0; }
} // namespace solver12
using Func = Common::mint (*)(i64, i64);
const Func solver[12] = {solver1::main,
solver2::main,
solver3::main,
solver4::main,
solver5::main,
solver6::main,
solver7::main,
solver8::main,
solver9::main,
solver10::main,
solver11::main,
solver12::main};
auto solve([[maybe_unused]] int t_ = 0) -> void {
i64 n, m;
cin >> n >> m;
Common::init_fact();
Common::init_pows(m, n);
Common::init_stirling2(m, n);
solver10::init_f(m, n);
for (auto &&f : solver) cout << f(n, m) << '\n';
}
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int i_ = 0;
solve(i_);
return 0;
}