1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
|
#include <bits/stdc++.h> #include <bits/stdtr1c++.h> #include <ext/algorithm> #include <ext/rb_tree> #include <ext/rope> #include <ext/vstring.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/priority_queue.hpp> #include <ext/pb_ds/exception.hpp> #include <ext/pb_ds/hash_policy.hpp> #include <ext/pb_ds/list_update_policy.hpp> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/trie_policy.hpp> namespace NdVector { template <size_t N, class Tp> struct ndvector: public std::vector<ndvector<N - 1, Tp>> { static_assert(N > 0, "N should be positive"); using base_tp = ndvector<N - 1, Tp>; using base = std::vector<base_tp>; using self = ndvector<N, Tp>; template <class T, typename... Ts> ndvector(T &&n, Ts &&...args): base(n, base_tp(args...)) {} constexpr size_t dim() const { return N; } template <class T> void fill(T &&x) { for (auto &i : *this) i.fill(x); } }; template <class Tp> struct ndvector<1, Tp>: public std::vector<Tp> { using base = std::vector<Tp>; using self = ndvector<1, Tp>; template <class T> ndvector(T &&n): base(n) {} constexpr size_t dim() const { return 1; } template <class T> void fill(T &&x) { std::fill(this->begin(), this->end(), x); } }; } struct CustomHash { static constexpr uint64_t splitmix64(uint64_t x) { x += 0x9e3779b97f4a7c15; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return x ^ (x >> 31); } static constexpr size_t append(size_t x, size_t y) { return x ^ (y >> 1) ^ ((y & 1) << (sizeof(size_t) * 8 - 1)); } size_t operator()(uint64_t x) const { static const uint64_t FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count(); return splitmix64(x + FIXED_RANDOM); } template <class Tp, class Up> size_t operator()(std::pair<Tp, Up> const &p) const { return append((*this)(p.first), (*this)(p.second)); } template <typename... Ts> size_t operator()(std::tuple<Ts...> const &tp) const { size_t ret = 0; std::apply( [&](Ts const &...targs) { ((ret = append(ret, (*this)(targs))), ...); }, tp); return ret; } template < class Tp, std::enable_if_t<std::is_same<decltype(std::declval<Tp>().begin()), typename Tp::iterator>::value && std::is_same<decltype(std::declval<Tp>().end()), typename Tp::iterator>::value> * = nullptr> size_t operator()(Tp const &tp) const { size_t ret = 0; for (auto &&i : tp) ret = append(ret, (*this)(i)); return ret; } }; using u32 = uint32_t; using i64 = int64_t; #define for_(i, l, r, vars...) \ for (std::make_signed_t<decltype(l + r)> i = (l), i##end = (r), ##vars; \ i <= i##end; \ ++i) #define rfor_(i, r, l, vars...) \ for (std::make_signed_t<decltype(r - l)> i = (r), i##end = (l), ##vars; \ i >= i##end; \ --i) template <class Tp> constexpr auto chkmin(Tp &a, Tp b) -> bool { return b < a ? a = b, true : false; } template <class Tp> constexpr auto chkmax(Tp &a, Tp b) -> bool { return a < b ? a = b, true : false; } template <class Tp> constexpr auto ispow2(Tp i) -> bool { return i && (i & -i) == i; } #define TPL_SIZE_(Tuple) std::tuple_size_v<std::remove_reference_t<Tuple>> namespace tuple_detail_ { template <std::size_t Begin, class Tuple, std::size_t... Is> constexpr auto subtuple_impl_(Tuple &&t, std::index_sequence<Is...>) { return std::make_tuple(std::get<Is + Begin>(t)...); } template <class Tuple, class BinOp, std::size_t... Is> constexpr auto apply2_impl_(BinOp &&f, Tuple &&lhs, Tuple &&rhs, std::index_sequence<Is...>) { return std::make_tuple( std::forward<BinOp>(f)(std::get<Is>(lhs), std::get<Is>(rhs))...); } } template <std::size_t Begin, std::size_t Len, class Tuple> constexpr auto subtuple(Tuple &&t) { static_assert(Begin <= TPL_SIZE_(Tuple) && Len <= TPL_SIZE_(Tuple) && Begin + Len <= TPL_SIZE_(Tuple), "Out of range"); return tuple_detail_::subtuple_impl_<Begin>(t, std::make_index_sequence<Len>()); } template <std::size_t Pos, class Tp, class Tuple> constexpr auto tuple_push(Tp &&v, Tuple &&t) { static_assert(TPL_SIZE_(Tuple) > 0, "Pop from empty tuple"); return std::tuple_cat(subtuple<0, Pos>(t), std::make_tuple(v), subtuple<Pos, TPL_SIZE_(Tuple) - Pos>(t)); } template <class Tp, class Tuple> constexpr auto tuple_push_front(Tp &&v, Tuple &&t) { return tuple_push<0>(v, t); } template <class Tp, class Tuple> constexpr auto tuple_push_back(Tp &&v, Tuple &&t) { return tuple_push<TPL_SIZE_(Tuple)>(v, t); } template <std::size_t Pos, class Tuple> constexpr auto tuple_pop(Tuple &&t) { static_assert(TPL_SIZE_(Tuple) > 0, "Pop from empty tuple"); return std::tuple_cat(subtuple<0, Pos>(t), subtuple<Pos + 1, TPL_SIZE_(Tuple) - Pos - 1>(t)); } template <class Tuple> constexpr auto tuple_pop_front(Tuple &&t) { return tuple_pop<0>(t); } template <class Tuple> constexpr auto tuple_pop_back(Tuple &&t) { return tuple_pop<TPL_SIZE_(Tuple) - 1>(t); } template <class Tuple, class BinOp> constexpr auto apply2(BinOp &&f, Tuple &&lhs, Tuple &&rhs) { return tuple_detail_::apply2_impl_( f, lhs, rhs, std::make_index_sequence<TPL_SIZE_(Tuple)>()); } #define OO_PTEQ_(op) \ template <class Tp, class Up> \ constexpr auto operator op(std::pair<Tp, Up> lhs, \ const std::pair<Tp, Up> &rhs) { \ return std::pair<Tp, Up>{lhs.first op rhs.first, \ lhs.second op rhs.second}; \ } \ template <class... Ts> \ constexpr auto operator op(std::tuple<Ts...> const &lhs, \ std::tuple<Ts...> const &rhs) { \ return apply2([](auto &&l, auto &&r) { return l op r; }, lhs, rhs); \ } \ template <class Tp, class Up> \ constexpr std::pair<Tp, Up> &operator op##=(std::pair<Tp, Up> &lhs, \ const std::pair<Tp, Up> &rhs) { \ lhs.first op## = rhs.first; \ lhs.second op## = rhs.second; \ return lhs; \ } \ template <class... Ts> \ constexpr auto operator op##=(std::tuple<Ts...> &lhs, \ const std::tuple<Ts...> &rhs) { \ return lhs = lhs op rhs; \ } OO_PTEQ_(+) OO_PTEQ_(-) OO_PTEQ_(*) OO_PTEQ_(/) OO_PTEQ_(%) OO_PTEQ_(&) OO_PTEQ_(|) OO_PTEQ_(^) OO_PTEQ_(<<) OO_PTEQ_(>>) #undef OO_PTEQ_ #undef TPL_SIZE_ template <class Tp, class Up> std::istream &operator>>(std::istream &is, std::pair<Tp, Up> &p) { return is >> p.first >> p.second; } template <class Tp, class Up> std::ostream &operator<<(std::ostream &os, const std::pair<Tp, Up> &p) { return os << p.first << ' ' << p.second; } template <typename... Ts> std::istream &operator>>(std::istream &is, std::tuple<Ts...> &p) { std::apply([&](Ts &...targs) { ((is >> targs), ...); }, p); return is; } template <typename... Ts> std::ostream &operator<<(std::ostream &os, const std::tuple<Ts...> &p) { std::apply( [&](Ts const &...targs) { std::size_t n{0}; ((os << targs << (++n != sizeof...(Ts) ? " " : "")), ...); }, p); return os; } template < class Ch, class Tr, class Ct, std::enable_if_t<std::is_same<decltype(std::declval<Ct>().begin()), typename Ct::iterator>::value && std::is_same<decltype(std::declval<Ct>().end()), typename Ct::iterator>::value> * = nullptr> std::basic_ostream<Ch, Tr> &operator<<(std::basic_ostream<Ch, Tr> &os, const Ct &x) { if (x.begin() == x.end()) return os; for (auto it = x.begin(); it != x.end() - 1; ++it) os << *it << ' '; os << x.back(); return os; } const u32 OFFSET = 5; const u32 N = 4e5 + OFFSET; const u32 M = 2e5 + OFFSET; const i64 MOD = 1e9 + 7; using namespace std; namespace Common { namespace MODINT { constexpr int64_t safe_mod(int64_t x, int64_t m) { return (x %= m) < 0 ? x + m : x; } constexpr std::pair<int64_t, int64_t> invgcd(int64_t a, int64_t b) { if ((a = safe_mod(a, b)) == 0) return {b, 0}; int64_t s = b, m0 = 0; for (int64_t q = 0, _ = 0, m1 = 1; a;) { _ = s - a * (q = s / a); s = a; a = _; _ = m0 - m1 * q; m0 = m1; m1 = _; } return {s, m0 + (m0 < 0 ? b / s : 0)}; } template <uint32_t MOD> class Mint { static_assert(MOD >= 1); using self = Mint<MOD>;
protected: uint32_t v_;
public: constexpr static uint32_t mod() { return MOD; } constexpr static self raw(uint32_t v) { self x; x.v_ = v; return x; } constexpr Mint(): v_(0) {} template <class T, std::enable_if_t<std::is_integral<T>::value && std::is_signed<T>::value> * = nullptr> constexpr Mint(T v): Mint() { int64_t x = (int64_t)(v % (int64_t)mod()); v_ = (uint32_t)(x + (x < 0 ? mod() : 0)); } template <class T, std::enable_if_t<std::is_integral<T>::value && std::is_unsigned<T>::value> * = nullptr> constexpr Mint(T v): v_((uint32_t)(v % mod())) {} friend std::istream &operator>>(std::istream &is, self &x) { int64_t xx; is >> xx; xx %= mod(); x.v_ = (uint32_t)(xx + (xx < 0 ? mod() : 0)); return is; } friend std::ostream &operator<<(std::ostream &os, const self &x) { return os << x.v_; } constexpr const uint32_t &val() const { return v_; } constexpr explicit operator uint32_t() const { return val(); } constexpr uint32_t &data() { return v_; } constexpr self &operator++() { if (++v_ == mod()) v_ = 0; return *this; } constexpr self &operator--() { if (!v_) v_ = mod(); --v_; return *this; } constexpr self operator++(int) { self result = *this; ++*this; return result; } constexpr self operator--(int) { self result = *this; --*this; return result; } constexpr self &operator+=(const self &rhs) { v_ += rhs.v_; if (v_ >= mod()) v_ -= mod(); return *this; } constexpr self &operator-=(const self &rhs) { v_ -= rhs.v_; if (v_ >= mod()) v_ += mod(); return *this; } constexpr self &operator*=(const self &rhs) { v_ = (uint32_t)((uint64_t)v_ * rhs.v_ % mod()); return *this; } constexpr self &operator/=(const self &rhs) { return *this = *this * inverse(rhs); } constexpr self operator+() const { return *this; } constexpr self operator-() const { return self() - *this; } constexpr friend self pow(self x, uint64_t y) { self res(1); for (; y; y >>= 1, x *= x) if (y & 1) res *= x; return res; } constexpr friend self inverse(const self &x) { auto &&_ = invgcd(x.v_, self::mod()); if (_.first != 1) throw std::runtime_error("Inverse not exist"); return _.second; } constexpr friend self operator+(self lhs, const self &rhs) { return lhs += rhs; } constexpr friend self operator-(self lhs, const self &rhs) { return lhs -= rhs; } constexpr friend self operator*(self lhs, const self &rhs) { return lhs *= rhs; } constexpr friend self operator/(self lhs, const self &rhs) { return lhs /= rhs; } constexpr friend bool operator==(const self &lhs, const self &rhs) { return lhs.v_ == rhs.v_; } constexpr friend bool operator!=(const self &lhs, const self &rhs) { return lhs.v_ != rhs.v_; } }; } using mint = MODINT::Mint<998244353>; vector<mint> fact, inv_fact; void init_fact(int64_t n = N) { fact.resize(n + 1); inv_fact.resize(n + 1); fact[0] = fact[1] = inv_fact[0] = inv_fact[1] = 1; for_(i, 2, n) fact[i] = fact[i - 1] * i; inv_fact.back() = 1 / fact.back(); rfor_(i, n - 1, 2) inv_fact[i] = inv_fact[i + 1] * (i + 1); } constexpr mint qpow(mint a, i64 b) { mint res(1); for (; b; b >>= 1, a *= a) if (b & 1) res *= a; return res; } auto inv_linear_gen = [](size_t n) -> std::vector<mint> { vector<mint> inv(n + 1, 1); for (int i = 2; i <= n; ++i) inv[i] = (mint::mod() - mint::mod() / i) * inv[mint::mod() % i]; return inv; }; vector<mint> inv = inv_linear_gen(N); constexpr mint mPn(int m, int n) { return m < n || n < 0 ? 0 : fact[m] * inv_fact[m - n]; } constexpr mint mCn(int m, int n) { return m < n || n < 0 ? 0 : mPn(m, n) * inv_fact[n]; } vector<mint> pows; void init_pows(int64_t m, int64_t n) { pows.resize(m + 1); for_(i, 0, m) pows[i] = qpow(i, n); } namespace Polynomial { using data_t = int32_t; using ldata_t = int64_t; const size_t N = 1 << 20 | 500; const data_t MOD = 998244353; using udata_t = std::make_unsigned<data_t>::type; using ludata_t = std::make_unsigned<ldata_t>::type; const size_t DEG_LIMIT = N << 1; namespace Helper { constexpr ldata_t qpow(ldata_t a, ldata_t b, const ldata_t &mod) { ldata_t res(1); for (; b; b >>= 1, (a *= a) %= mod) if (b & 1) (res *= a) %= mod; return res; } constexpr ldata_t inverse(ldata_t n, const ldata_t &mod) { ldata_t b = mod, m0 = 0; for (ldata_t q = 0, _ = 0, m1 = 1; n;) { _ = b - n * (q = b / n); b = n; n = _; _ = m0 - m1 * q; m0 = m1; m1 = _; } return (m0 + (m0 < 0 ? mod / b : 0)) % mod; } constexpr data_t proot_impl_(data_t m) { if (m == 2) return 1; if (m == 3 || m == 5) return 2; if (m == 104857601 || m == 167772161 || m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353 || m == 1004535809) return 3; data_t divs[20] = {2}; data_t cnt = 1, x = (m - 1) / 2; while (!(x & 1)) x >>= 1; for (data_t i = 3; (ldata_t)i * i <= x; i += 2) if (x % i == 0) { divs[++cnt] = i; while (x % i == 0) x /= i; } if (x > 1) divs[++cnt] = x; for (data_t g = 2;; ++g) { bool ok = true; for (data_t i = 0; i < cnt; ++i) if (qpow(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } if (ok) return g; } } template <data_t M> constexpr data_t proot = proot_impl_(M); constexpr int legendre_symbol(uint64_t a, uint64_t p) noexcept { if (a == 0) return 0; int s = 1, _ctz = 0; while (a > 1) { if (a == p || a == 0 || p < 2) return 0; _ctz = __builtin_ctzll(a); if (((p - 1) & 7) && ((p + 1) & 7) && (_ctz & 1)) s = -s; if ((a >>= _ctz) == 1) break; if ((((p - 1) & 7) * (a - 1)) & 7) s = -s; p %= a; auto _ = a; a = p; p = _; } return s; } struct GaussInt { data_t real, imag; const data_t i_sqr, mod; constexpr GaussInt &operator*=(GaussInt rhs) { const ldata_t _r = real, _i = imag; real = (data_t)((_r * rhs.real % mod + i_sqr * _i % mod * rhs.imag % mod) % mod); imag = (data_t)((_i * rhs.real % mod + _r * rhs.imag % mod) % mod); return *this; } }; std::mt19937 eng__(time(nullptr)); data_t quad_residue(data_t n, data_t p) { if (n == 0 || n == 1 || n == p - 1) return n; if (legendre_symbol(n, p) != 1) return -1; std::uniform_int_distribution<ldata_t> u(2, p - 1); ldata_t a = u(eng__); while (legendre_symbol((a * a % p + p - n) % p, p) == 1) a = u(eng__); data_t ret = [](GaussInt a, udata_t b) { GaussInt res{1, 0, a.i_sqr, a.mod}; for (; b; b >>= 1, a *= a) if (b & 1) res *= a; return res.real; }(GaussInt{(data_t)a, 1, (data_t)(a * a % p + p - n) % p, p}, (p + 1) / 2); return std::min(ret, p - ret); } template <size_t DEG_LIMIT, data_t MOD> class INV_ { protected: data_t data[DEG_LIMIT];
public: constexpr INV_() { data[0] = 0; data[1] = 1; for (size_t i = 2; i < DEG_LIMIT; ++i) data[i] = (data_t)((ldata_t)data[MOD % i] * (MOD - MOD / i) % MOD); } constexpr const data_t &operator[](size_t idx) const { return data[idx]; } }; template <size_t DEG_LIMIT, data_t MOD> class NTT_ { constexpr static data_t G = proot<MOD>, IG = inverse(G, MOD);
protected: data_t root[DEG_LIMIT]; size_t rsz_; ludata_t f[DEG_LIMIT], w[DEG_LIMIT]; constexpr void root_init(size_t n) { if (rsz_ == n) return; rsz_ = n; for (size_t i = 0; i < n; ++i) root[i] = (root[i >> 1] >> 1) | (data_t)((i & 1) * (n >> 1)); }
public: constexpr NTT_() = default; constexpr void operator()(data_t *g, size_t n, bool inv = false) { root_init(n); w[0] = 1; for (size_t i = 0; i < n; ++i) f[i] = (((ldata_t)MOD << 5) + g[root[i]]) % MOD; for (size_t l = 1; l < n; l <<= 1) { ludata_t tG = qpow(inv ? IG : G, (MOD - 1) / (l + l), MOD); for (size_t i = 1; i < l; ++i) w[i] = w[i - 1] * tG % MOD; for (size_t k = 0; k < n; k += l + l) for (size_t p = 0; p < l; ++p) { ldata_t _ = w[p] * f[k | l | p] % MOD; f[k | l | p] = f[k | p] + (MOD - _); f[k | p] += _; } if (l == (1 << 10)) for (size_t i = 0; i < n; ++i) f[i] %= MOD; } if (inv) { ludata_t in = inverse(n, MOD); for (size_t i = 0; i < n; ++i) g[i] = (data_t)(f[i] % MOD * in % MOD); } else for (size_t i = 0; i < n; ++i) g[i] = (data_t)(f[i] % MOD); } }; const INV_<DEG_LIMIT, MOD> inv; NTT_<DEG_LIMIT, MOD> NTT; } using Helper::inverse; using Helper::NTT; using Helper::qpow; class Poly { protected: std::vector<data_t> data; template <class Fodd, class Feven> void expand_base__( Poly &ans, size_t n, data_t val1, Fodd &&fodd, Feven &&feven) const { if (n == 1) { ans.data.push_back(val1); return; } if (n & 1) { expand_base__(ans, n - 1, val1, fodd, feven); fodd(ans, n); return; } expand_base__(ans, n / 2, val1, fodd, feven); feven(ans, n); } void inv_(Poly &ans, size_t n) const { expand_base__( ans, n, (data_t)inverse(data[0], MOD), [this](Poly &ans, size_t n) -> void { --n; ldata_t _ = 0; for (size_t i = 0; i < n; ++i) _ = (_ + (ldata_t)ans[i] * data[n - i]) % MOD; ans.data.push_back((data_t)(_ * inverse(MOD - data[0], MOD) % MOD)); }, [this](Poly &ans, size_t n) -> void { Poly sA = *this; sA.resize(n); ans = ans * 2 - (ans * ans * sA).resize(n); }); } void exp_(Poly &ans, size_t n) const { expand_base__( ans, n, 1, [this](Poly &ans, size_t n) -> void { n -= 2; ldata_t _ = 0; for (size_t i = 0; i <= n; ++i) _ = (_ + (i + 1) * data[i + 1] % MOD * ans[n - i] % MOD) % MOD; ans.data.push_back((data_t)(_ * Helper::inv[n + 1] % MOD)); }, [this](Poly &ans, size_t n) -> void { Poly ans_log = ans; ans_log.resize(n); ans_log.do_log(); for (size_t i = 0; i < ans_log.size(); ++i) ans_log[i] = (MOD + data[i] - ans_log[i]) % MOD; ++ans_log[0]; (ans *= ans_log).resize(n); }); }
public: explicit Poly(decltype(DEG_LIMIT) sz = 0): data(std::min(DEG_LIMIT, sz)) {} explicit Poly(const std::initializer_list<data_t> &v): data(v) {} explicit Poly(const std::vector<data_t> &v): data(v) {} friend std::istream &operator>>(std::istream &is, Poly &poly) { for (auto &val : poly.data) is >> val; return is; } friend std::ostream &operator<<(std::ostream &os, const Poly &poly) { for (size_t i = 1; i < poly.size(); ++i) os << poly[i - 1] << ' '; return os << poly.data.back(); } data_t &operator[](size_t x) { return data[x]; } const data_t &operator[](size_t x) const { return data[x]; } size_t size() const { return data.size(); } Poly &resize(size_t size) { data.resize(size); return *this; } Poly &operator*=(const data_t &c) { for (data_t &val : data) val = (data_t)((ldata_t)val * c % MOD); return *this; } friend Poly operator*(Poly poly, const data_t &c) { return poly *= c; } friend Poly operator*(const data_t &c, Poly poly) { return poly *= c; } #define OOCR_(op, ...) \ Poly &operator op##=(const Poly &rhs) __VA_ARGS__ friend Poly operator op( \ Poly lhs, const Poly &rhs) { \ return lhs op## = rhs; \ } #define OO_(op, ...) \ Poly &operator op##=(Poly rhs) __VA_ARGS__ friend Poly operator op( \ Poly lhs, const Poly &rhs) { \ return lhs op## = rhs; \ } OOCR_(+, { resize(std::max(size(), rhs.size())); for (size_t i = 0; i < rhs.size(); ++i) { data[i] += rhs[i]; data[i] -= data[i] >= MOD ? MOD : 0; } return *this; }) OOCR_(-, { resize(std::max(size(), rhs.size())); for (size_t i = 0; i < rhs.size(); ++i) { data[i] += MOD - rhs[i]; data[i] -= data[i] >= MOD ? MOD : 0; } return *this; }) OOCR_(*, { static data_t a__[N << 1], b__[N << 1]; std::copy(data.begin(), data.end(), a__); std::copy(rhs.data.begin(), rhs.data.end(), b__); size_t _sz = size(); data.clear(); resize(_sz + rhs.size() - 1); size_t n = (size_t)(1) << (size_t)std::max(1., std::ceil(std::log2(size()))); NTT(a__, n); NTT(b__, n); for (size_t i = 0; i < n; ++i) a__[i] = (data_t)((ldata_t)a__[i] * b__[i] % MOD); NTT(a__, n, true); std::copy(a__, a__ + size(), data.begin()); memset(a__, 0, sizeof(a__[0]) * (n)); memset(b__, 0, sizeof(b__[0]) * (n)); return *this; }) OO_(/, { size_t n_ = size(), m_ = rhs.size(); std::reverse(data.begin(), data.end()); std::reverse(rhs.data.begin(), rhs.data.end()); rhs.resize(n_ - m_ + 1); *this *= rhs.do_inverse(); resize(n_ - m_ + 1); std::reverse(data.begin(), data.end()); return *this; }) #undef OO_ #undef OOCR_ #define FUNC_(name, ...) \ Poly &do_##name() __VA_ARGS__ friend Poly name(Poly poly) { \ return poly.do_##name(); \ } #define FUNCP2_(name, type1, var1, type2, var2, ...) \ Poly &do_##name(type1 var1, type2 var2) __VA_ARGS__ friend Poly name( \ Poly poly, type1 var1, type2 var2) { \ return poly.do_##name(var1, var2); \ } FUNC_(inverse, { Poly ret; inv_(ret, size()); return *this = ret; }) FUNC_(derivative, { for (size_t i = 1; i < size(); ++i) data[i - 1] = (data_t)((ldata_t)data[i] * i % MOD); data.pop_back(); return *this; }) FUNC_(integral, { data.push_back(0); for (size_t i = size() - 1; i; --i) data[i] = (data_t)((ldata_t)data[i - 1] * Helper::inv[i] % MOD); data.front() = 0; return *this; }) FUNC_(log, { size_t sz_ = size(); *this = (derivative(*this) * inverse(*this)).do_integral(); resize(sz_); return *this; }) FUNC_(exp, { Poly ret; exp_(ret, size()); return *this = ret; }) #undef FUNC_ #undef FUNCP2_ }; } using Polynomial::Poly; Poly dgf_stirling2; void init_stirling2(int64_t m, int64_t n) { Poly a(m + 1), b(m + 1); for_(i, 0, m) a[i] = (pows[i] * inv_fact[i]).val(); for_(i, 0, m) b[i] = (((i & 1) ? -1 : 1) * inv_fact[i]).val(); (dgf_stirling2 = a * b).resize(m + 1); } } namespace solver1 { using namespace Common; mint main(i64 n, i64 m) { return qpow(m, n); } } namespace solver2 { using namespace Common; mint main(i64 n, i64 m) { return mPn(m, n); } } namespace solver3 { using namespace Common; mint main(i64 n, i64 m) { mint ans = 0; int f = m & 1; for_(i, 1, m) { f ? (ans += mCn(m, i) * pows[i]) : (ans -= mCn(m, i) * pows[i]); f ^= 1; } return ans; } } namespace solver4 { using namespace Common; mint main(i64 n, i64 m) { mint ans = 0; for_(i, 0, m) ans += dgf_stirling2[i]; return ans; } } namespace solver5 { using namespace Common; mint main(i64 n, i64 m) { return m >= n; } } namespace solver6 { using namespace Common; mint main(i64 n, i64 m) { return dgf_stirling2[m]; } } namespace solver7 { using namespace Common; mint main(i64 n, i64 m) { return mCn(m + n - 1, m - 1); } } namespace solver8 { using namespace Common; mint main(i64 n, i64 m) { return mCn(m, n); } } namespace solver9 { using namespace Common; mint main(i64 n, i64 m) { return mCn(n - 1, m - 1); } } namespace solver10 { using namespace Common; Poly f; void init_f(int64_t m, int64_t n) { f.resize(n + 1); for_(i, 1, m) for_(k, 1, n / i) f[i * k] = (f[i * k] + inv[k]).val(); f.do_exp(); } mint main(i64 n, i64 m) { return f[n]; } } namespace solver11 { using namespace Common; mint main(i64 n, i64 m) { return m >= n; } } namespace solver12 { using namespace Common; mint main(i64 n, i64 m) { return n >= m ? solver10::f[n - m] : 0; } } using Func = Common::mint (*)(i64, i64); const Func solver[12] = {solver1::main, solver2::main, solver3::main, solver4::main, solver5::main, solver6::main, solver7::main, solver8::main, solver9::main, solver10::main, solver11::main, solver12::main}; auto solve([[maybe_unused]] int t_ = 0) -> void { i64 n, m; cin >> n >> m; Common::init_fact(); Common::init_pows(m, n); Common::init_stirling2(m, n); solver10::init_f(m, n); for (auto &&f : solver) cout << f(n, m) << '\n'; } int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); int i_ = 0; solve(i_); return 0; }
|