1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
#include <bits/stdc++.h> namespace Polynomial { using data_t = int32_t; using ldata_t = int64_t; const size_t N = 1 << 17 | 500; const data_t MOD = 998244353; using udata_t = std::make_unsigned<data_t>::type; using ludata_t = std::make_unsigned<ldata_t>::type; const size_t DEG_LIMIT = N << 1; namespace Helper { constexpr ldata_t qpow(ldata_t a, ldata_t b, const ldata_t &mod) { ldata_t res(1); for (; b; b >>= 1, (a *= a) %= mod) if (b & 1) (res *= a) %= mod; return res; } constexpr ldata_t inverse(ldata_t n, const ldata_t &mod) { ldata_t b = mod, m0 = 0; for (ldata_t q = 0, _ = 0, m1 = 1; n;) { _ = b - n * (q = b / n); b = n; n = _; _ = m0 - m1 * q; m0 = m1; m1 = _; } return (m0 + (m0 < 0 ? mod / b : 0)) % mod; } constexpr data_t proot_impl_(data_t m) { if (m == 2) return 1; if (m == 3 || m == 5) return 2; if (m == 104857601 || m == 167772161 || m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353 || m == 1004535809) return 3; data_t divs[20] = {2}; data_t cnt = 1, x = (m - 1) / 2; while (!(x & 1)) x >>= 1; for (data_t i = 3; (ldata_t)i * i <= x; i += 2) if (x % i == 0) { divs[++cnt] = i; while (x % i == 0) x /= i; } if (x > 1) divs[++cnt] = x; for (data_t g = 2;; ++g) { bool ok = true; for (data_t i = 0; i < cnt; ++i) if (qpow(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } if (ok) return g; } } template <data_t M> constexpr data_t proot = proot_impl_(M); constexpr int legendre_symbol(uint64_t a, uint64_t p) noexcept { if (a == 0) return 0; int s = 1, _ctz = 0; while (a > 1) { if (a == p || a == 0 || p < 2) return 0; _ctz = __builtin_ctzll(a); if (((p - 1) & 7) && ((p + 1) & 7) && (_ctz & 1)) s = -s; if ((a >>= _ctz) == 1) break; if ((((p - 1) & 7) * (a - 1)) & 7) s = -s; std::swap(p %= a, a); } return s; } struct GaussInt { data_t real, imag; const data_t i_sqr, mod; constexpr GaussInt &operator*=(GaussInt rhs) { const ldata_t _r = real, _i = imag; real = (data_t)((_r * rhs.real % mod + i_sqr * _i % mod * rhs.imag % mod) % mod); imag = (data_t)((_i * rhs.real % mod + _r * rhs.imag % mod) % mod); return *this; } }; std::mt19937 eng__(time(nullptr)); data_t quad_residue(data_t n, data_t p) { if (n == 0 || n == 1 || n == p - 1) return n; if (legendre_symbol(n, p) != 1) return -1; std::uniform_int_distribution<ldata_t> u(2, p - 1); ldata_t a = u(eng__); while (legendre_symbol((a * a % p + p - n) % p, p) == 1) a = u(eng__); data_t ret = [](GaussInt a, udata_t b) { GaussInt res{1, 0, a.i_sqr, a.mod}; for (; b; b >>= 1, a *= a) if (b & 1) res *= a; return res.real; }(GaussInt{(data_t)a, 1, (data_t)(a * a % p + p - n) % p, p}, (p + 1) / 2); return std::min(ret, p - ret); } template <size_t DEG_LIMIT, data_t MOD> class INV_ { protected: data_t data[DEG_LIMIT];
public: constexpr INV_() { data[0] = 0; data[1] = 1; for (size_t i = 2; i < DEG_LIMIT; ++i) data[i] = (data_t)((ldata_t)data[MOD % i] * (MOD - MOD / i) % MOD); } constexpr const data_t &operator[](size_t idx) const { return data[idx]; } }; template <size_t DEG_LIMIT, data_t MOD> class NTT_ { constexpr static data_t G = proot<MOD>, IG = inverse(G, MOD);
protected: data_t root[DEG_LIMIT]; size_t rsz_; ludata_t f[DEG_LIMIT], w[DEG_LIMIT]; constexpr void root_init(size_t n) { if (rsz_ == n) return; rsz_ = n; for (size_t i = 0; i < n; ++i) root[i] = (root[i >> 1] >> 1) | (data_t)((i & 1) * (n >> 1)); }
public: constexpr NTT_() = default; constexpr void operator()(data_t *g, size_t n, bool inv = false) { root_init(n); w[0] = 1; for (size_t i = 0; i < n; ++i) f[i] = (((ldata_t)MOD << 5) + g[root[i]]) % MOD; for (size_t l = 1; l < n; l <<= 1) { ludata_t tG = qpow(inv ? IG : G, (MOD - 1) / (l + l), MOD); for (size_t i = 1; i < l; ++i) w[i] = w[i - 1] * tG % MOD; for (size_t k = 0; k < n; k += l + l) for (size_t p = 0; p < l; ++p) { ldata_t _ = w[p] * f[k | l | p] % MOD; f[k | l | p] = f[k | p] + (MOD - _); f[k | p] += _; } if (l == (1 << 10)) for (size_t i = 0; i < n; ++i) f[i] %= MOD; } if (inv) { ludata_t in = inverse(n, MOD); for (size_t i = 0; i < n; ++i) g[i] = (data_t)(f[i] % MOD * in % MOD); } else for (size_t i = 0; i < n; ++i) g[i] = (data_t)(f[i] % MOD); } }; const INV_<DEG_LIMIT, MOD> inv; NTT_<DEG_LIMIT, MOD> NTT; } using Helper::inverse; using Helper::NTT; using Helper::qpow; class Poly { protected: std::vector<data_t> data; template <class Fodd, class Feven> void expand_base__( Poly &ans, size_t n, data_t val1, Fodd &&fodd, Feven &&feven) const { if (n == 1) { ans.data.push_back(val1); return; } if (n & 1) { expand_base__(ans, n - 1, val1, fodd, feven); fodd(ans, n); return; } expand_base__(ans, n / 2, val1, fodd, feven); feven(ans, n); } void inv_(Poly &ans, size_t n) const { expand_base__( ans, n, (data_t)inverse(data[0], MOD), [this](Poly &ans, size_t n) -> void { --n; ldata_t _ = 0; for (size_t i = 0; i < n; ++i) _ = (_ + (ldata_t)ans[i] * data[n - i]) % MOD; ans.data.push_back((data_t)(_ * inverse(MOD - data[0], MOD) % MOD)); }, [this](Poly &ans, size_t n) -> void { Poly sA = *this; sA.resize(n); ans = ans * 2 - (ans * ans * sA).resize(n); }); } void exp_(Poly &ans, size_t n) const { expand_base__( ans, n, 1, [this](Poly &ans, size_t n) -> void { n -= 2; ldata_t _ = 0; for (size_t i = 0; i <= n; ++i) _ = (_ + (i + 1) * data[i + 1] % MOD * ans[n - i] % MOD) % MOD; ans.data.push_back((data_t)(_ * Helper::inv[n + 1] % MOD)); }, [this](Poly &ans, size_t n) -> void { Poly ans_log = ans; ans_log.resize(n); ans_log.do_log(); for (size_t i = 0; i < ans_log.size(); ++i) ans_log[i] = (MOD + data[i] - ans_log[i]) % MOD; ++ans_log[0]; (ans *= ans_log).resize(n); }); } void sqrt_(Poly &ans, size_t n) const { if (n == 1) { auto &&qres = Helper::quad_residue(data[0], MOD); assert(qres != -1); ans.data.push_back(qres); return; } sqrt_(ans, (n + 1) / 2); Poly sA = *this; sA.resize(n); ans.resize(ans.size() * 2); ans = (sA + (ans * ans).resize(n)) * inverse(ans * 2); ans.resize(n); }
public: explicit Poly(decltype(DEG_LIMIT) sz = 0): data(std::min(DEG_LIMIT, sz)) {} explicit Poly(const std::initializer_list<data_t> &v): data(v) {} explicit Poly(const std::vector<data_t> &v): data(v) {} friend std::istream &operator>>(std::istream &is, Poly &poly) { for (auto &val : poly.data) is >> val; return is; } friend std::ostream &operator<<(std::ostream &os, const Poly &poly) { for (size_t i = 1; i < poly.size(); ++i) os << poly[i - 1] << ' '; return os << poly.data.back(); } data_t &operator[](size_t x) { return data[x]; } const data_t &operator[](size_t x) const { return data[x]; } size_t size() const { return data.size(); } Poly &resize(size_t size) { data.resize(size); return *this; } Poly &strip() { if (size() > DEG_LIMIT) resize(DEG_LIMIT); while (!data.back()) data.pop_back(); if (data.empty()) data.push_back(0); return *this; } Poly &operator*=(const data_t &c) { for (data_t &val : data) val = (data_t)((ldata_t)val * c % MOD); return *this; } friend Poly operator*(Poly poly, const data_t &c) { return poly *= c; } friend Poly operator*(const data_t &c, Poly poly) { return poly *= c; } #define OOCR_(op, ...) \ Poly &operator op##=(const Poly &rhs) __VA_ARGS__ friend Poly operator op( \ Poly lhs, const Poly &rhs) { \ return lhs op## = rhs; \ } #define OO_(op, ...) \ Poly &operator op##=(Poly rhs) __VA_ARGS__ friend Poly operator op( \ Poly lhs, const Poly &rhs) { \ return lhs op## = rhs; \ } OOCR_(+, { resize(std::max(size(), rhs.size())); for (size_t i = 0; i < rhs.size(); ++i) { data[i] += rhs[i]; data[i] -= data[i] >= MOD ? MOD : 0; } return *this; }) OOCR_(-, { resize(std::max(size(), rhs.size())); for (size_t i = 0; i < rhs.size(); ++i) { data[i] += MOD - rhs[i]; data[i] -= data[i] >= MOD ? MOD : 0; } return *this; }) OOCR_(*, { static data_t a__[N << 1], b__[N << 1]; std::copy(data.begin(), data.end(), a__); std::copy(rhs.data.begin(), rhs.data.end(), b__); size_t _sz = size(); data.clear(); resize(_sz + rhs.size() - 1); size_t n = (size_t)(1) << (size_t)std::max(1., std::ceil(std::log2(size()))); NTT(a__, n); NTT(b__, n); for (size_t i = 0; i < n; ++i) a__[i] = (data_t)((ldata_t)a__[i] * b__[i] % MOD); NTT(a__, n, true); std::copy(a__, a__ + size(), data.begin()); memset(a__, 0, sizeof(a__[0]) * (n)); memset(b__, 0, sizeof(b__[0]) * (n)); return *this; }) OO_(/, { size_t n_ = size(), m_ = rhs.size(); std::reverse(data.begin(), data.end()); std::reverse(rhs.data.begin(), rhs.data.end()); rhs.resize(n_ - m_ + 1); *this *= rhs.do_inverse(); resize(n_ - m_ + 1); std::reverse(data.begin(), data.end()); return *this; }) OOCR_(%, { auto &&__ = rhs * (*this / rhs); return (*this -= __).resize(rhs.size() - 1); }) #undef OO_ #undef OOCR_ friend std::pair<Poly, Poly> divmod(const Poly &lhs, const Poly &rhs) { auto &&div_ = lhs / rhs; return {div_, (lhs - rhs * div_).resize(rhs.size() - 1)}; } Poly &shift_left(size_t offset) { if (offset == 0) return *this; if (offset >= size()) { data.clear(); return *this; } data.erase(std::move(data.begin() + offset, data.end(), data.begin()), data.end()); return *this; } Poly &shift_right(size_t offset) { if (offset == 0) return *this; resize(size() + offset); std::fill(data.begin(), std::move_backward(data.begin(), data.end() - offset, data.end()), 0); return *this; } #define FUNC_(name, ...) \ Poly &do_##name() __VA_ARGS__ friend Poly name(Poly poly) { \ return poly.do_##name(); \ } #define FUNCP2_(name, type1, var1, type2, var2, ...) \ Poly &do_##name(type1 var1, type2 var2) __VA_ARGS__ friend Poly name( \ Poly poly, type1 var1, type2 var2) { \ return poly.do_##name(var1, var2); \ } FUNC_(inverse, { Poly ret; inv_(ret, size()); return *this = ret; }) FUNC_(derivative, { for (size_t i = 1; i < size(); ++i) data[i - 1] = (data_t)((ldata_t)data[i] * i % MOD); data.pop_back(); return *this; }) FUNC_(integral, { data.push_back(0); for (size_t i = size() - 1; i; --i) data[i] = (data_t)((ldata_t)data[i - 1] * Helper::inv[i] % MOD); data.front() = 0; return *this; }) FUNC_(log, { size_t sz_ = size(); *this = (derivative(*this) * inverse(*this)).do_integral(); resize(sz_); return *this; }) FUNC_(exp, { Poly ret; exp_(ret, size()); return *this = ret; }) FUNC_(sqrt, { Poly ret; sqrt_(ret, size()); return *this = ret; }) FUNC_(sin, { size_t sz_ = size(); data_t i = qpow(Helper::proot<MOD>, (MOD - 1) / 4, MOD); *this *= i; *this = (exp(*this * (MOD - 1)) - exp(*this)) * (data_t)(i * inverse(2, MOD) % MOD); resize(sz_); return *this; }) FUNC_(cos, { size_t sz_ = size(); data_t i = qpow(Helper::proot<MOD>, (MOD - 1) / 4, MOD); *this *= i; *this = (exp(*this) + exp(*this * (MOD - 1))) * (data_t)inverse(2, MOD); resize(sz_); return *this; }) FUNC_(tan, { size_t sz_ = size(); data_t i = 2 * qpow(Helper::proot<MOD>, (MOD - 1) / 4, MOD); (*this *= i).do_exp(); Poly _1 = *this, _2 = *this; --_1[0]; ++_2[0]; *this = _1 * _2.do_inverse() * (MOD - i); resize(sz_); return *this; }) FUNC_(asin, { size_t sz_ = size(); Poly _1 = (*this * *this * (MOD - 1)).resize(sz_); ++_1[0]; *this = (derivative(*this) * _1.do_sqrt().do_inverse()).resize(sz_).do_integral(); resize(sz_); return *this; }) FUNC_(acos, { size_t sz_ = size(); Poly _1 = (*this * *this * (MOD - 1)).resize(sz_); ++_1[0]; *this = (derivative(*this) * _1.do_sqrt().do_inverse() * (MOD - 1)) .resize(sz_) .do_integral(); resize(sz_); return *this; }) FUNC_(atan, { size_t sz_ = size(); Poly _1 = (*this * *this).resize(sz_); ++_1[0]; *this = (derivative(*this) * _1.do_inverse()).resize(sz_).do_integral(); resize(sz_); return *this; }) FUNCP2_(pow, ludata_t, y, ludata_t, y_mod_phiMOD, { size_t k_ = 0, sz_ = data.size(); for (; k_ < sz_; ++k_) if (data[k_]) break; if (k_ * y >= sz_) { std::fill(data.begin(), data.end(), 0); return *this; } shift_left(k_); resize(sz_ - k_ * y); data_t c_ = data[0], inv_c_ = (data_t)inverse(c_, MOD), c_y_ = (data_t)qpow(c_, y_mod_phiMOD, MOD); *this *= inv_c_; *this = (log(*this) * (data_t)y).do_exp() * c_y_; shift_right(k_ * y); return *this; }) #undef FUNC_ #undef FUNCP2_ }; } using Polynomial::Poly; using namespace std; using Polynomial::qpow, Polynomial::MOD, Polynomial::Helper::inv; auto solve([[maybe_unused]] int t_ = 0) -> void { int n; cin >> n; Poly a(n + 1), b(n + 1); cin >> a >> b; auto &&ib = integral(b); auto &&mu = exp(ib); auto &&g = integral(mu * a) * (Polynomial::MOD - 1); g[0] = (g[0] + 1) % Polynomial::MOD; g.resize(n + 1); auto &&f = ib - log(g); f[0] = (f[0] + 1) % Polynomial::MOD; cout << f.resize(n + 1); } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); solve(); return 0; }
|