比赛链接
进度: 6 / 6
A - Greatest Convex You are given an integer \(k\) . Find the largest integer \(x\) , where \(1 \le x < k\) , such that \(x! + (x - 1)!^\dagger\) is a multiple of \(^\ddagger\) \(k\) , or determine that no such \(x\) exists
\(^\dagger\) \(y!\) denotes the factorial of \(y\) , which is defined recursively as \(y! = y \cdot (y-1)!\) for \(y \geq 1\) with the base case of \(0! = 1\) . For example, \(5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 0! = 120\)
\(^\ddagger\) If \(a\) and \(b\) are integers, then \(a\) is a multiple of \(b\) if there exists an integer \(c\) such that \(a = b \cdot c\) . For example, \(10\) is a multiple of \(5\) but \(9\) is not a multiple of \(6\)
The first line contains a single integer \(t\) (\(1 \le t \le 10^4\) ) — the number of test cases. The description of test cases follows
The only line of each test case contains a single integer \(k\) (\(2 \le k \le 10^9\) )
Output For each test case output a single integer — the largest possible integer \(x\) that satisfies the conditions above
If no such \(x\) exists, output \(-1\)
Example output Note In the first test case, \(2! + 1! = 2 + 1 = 3\) , which is a multiple of \(3\)
In the third test case, \(7! + 6! = 5040 + 720 = 5760\) , which is a multiple of \(8\)
代码参考
Show code
CodeForces_1768A view raw 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 #include <bits/stdc++.h> struct CustomHash { static constexpr uint64_t splitmix64 (uint64_t x) { x += 0x9e3779b97f4a7c15 ; x = (x ^ (x >> 30 )) * 0xbf58476d1ce4e5b9 ; x = (x ^ (x >> 27 )) * 0x94d049bb133111eb ; return x ^ (x >> 31 ); } static constexpr size_t append (size_t x, size_t y) { return x ^ (y >> 1 ) ^ ((y & 1 ) << (sizeof (size_t ) * 8 - 1 )); } size_t operator () (uint64_t x) const { static const uint64_t FIXED_RANDOM = std::chrono::steady_clock::now ().time_since_epoch ().count (); return splitmix64 (x + FIXED_RANDOM); } template <class Tp , class Up > size_t operator () (std::pair<Tp, Up> const &p) const { return append ((*this )(p.first), (*this )(p.second)); } template <typename ... Ts> size_t operator () (std::tuple<Ts...> const &tp) const { size_t ret = 0 ; std::apply ( [&](Ts const &...targs) { ((ret = append (ret, (*this )(targs))), ...); }, tp); return ret; } template < class Tp , std::enable_if_t <std::is_same<decltype (std::declval <Tp>().begin ()), typename Tp::iterator>::value && std::is_same<decltype (std::declval <Tp>().end ()), typename Tp::iterator>::value> * = nullptr > size_t operator ()(Tp const &tp) const { size_t ret = 0 ; for (auto &&i : tp) ret = append (ret, (*this )(i)); return ret; } }; using i64 = int64_t ;#define read_var_(type, name) \ type name; \ std::cin >> name template <class Tp >constexpr auto chkmin (Tp &a, Tp b) -> bool { return b < a ? a = b, true : false ; } template <class Tp >constexpr auto chkmax (Tp &a, Tp b) -> bool { return a < b ? a = b, true : false ; } template <class Tp >constexpr auto ispow2 (Tp i) -> bool { return i && (i & -i) == i; } #define TPL_SIZE_(Tuple) std::tuple_size_v<std::remove_reference_t<Tuple> > namespace tuple_detail_ {template <std::size_t Begin, class Tuple , std::size_t ... Is>constexpr auto subtuple_impl_ (Tuple &&t, std::index_sequence<Is...>) { return std::make_tuple (std::get <Is + Begin>(t)...); } template <class Tuple , class BinOp , std::size_t ... Is>constexpr auto apply2_impl_ (BinOp &&f, Tuple &&lhs, Tuple &&rhs, std::index_sequence<Is...>) { return std::make_tuple ( std::forward<BinOp>(f)(std::get <Is>(lhs), std::get <Is>(rhs))...); } } template <std::size_t Begin, std::size_t Len, class Tuple >constexpr auto subtuple (Tuple &&t) { static_assert (Begin <= TPL_SIZE_ (Tuple) && Len <= TPL_SIZE_ (Tuple) && Begin + Len <= TPL_SIZE_ (Tuple), "Out of range" ); return tuple_detail_::subtuple_impl_ <Begin>(t, std::make_index_sequence <Len>()); } template <std::size_t Pos, class Tp , class Tuple >constexpr auto tuple_push (Tp &&v, Tuple &&t) { static_assert (TPL_SIZE_ (Tuple) > 0 , "Pop from empty tuple" ); return std::tuple_cat (subtuple <0 , Pos>(t), std::make_tuple (v), subtuple <Pos, TPL_SIZE_ (Tuple) - Pos>(t)); } template <class Tp , class Tuple >constexpr auto tuple_push_front (Tp &&v, Tuple &&t) { return tuple_push <0 >(v, t); } template <class Tp , class Tuple >constexpr auto tuple_push_back (Tp &&v, Tuple &&t) { return tuple_push <TPL_SIZE_ (Tuple)>(v, t); } template <std::size_t Pos, class Tuple >constexpr auto tuple_pop (Tuple &&t) { static_assert (TPL_SIZE_ (Tuple) > 0 , "Pop from empty tuple" ); return std::tuple_cat (subtuple <0 , Pos>(t), subtuple <Pos + 1 , TPL_SIZE_ (Tuple) - Pos - 1 >(t)); } template <class Tuple >constexpr auto tuple_pop_front (Tuple &&t) { return tuple_pop <0 >(t); } template <class Tuple >constexpr auto tuple_pop_back (Tuple &&t) { return tuple_pop <TPL_SIZE_ (Tuple) - 1 >(t); } template <class Tuple , class BinOp >constexpr auto apply2 (BinOp &&f, Tuple &&lhs, Tuple &&rhs) { return tuple_detail_::apply2_impl_ ( f, lhs, rhs, std::make_index_sequence <TPL_SIZE_ (Tuple)>()); } #define OO_PTEQ_(op) \ template <class Tp, class Up> \ constexpr auto operator op(std::pair<Tp, Up> lhs, \ const std::pair<Tp, Up> &rhs) { \ return std::pair<Tp, Up> {lhs.first op rhs.first, \ lhs.second op rhs.second}; \ } \ template <class... Ts> \ constexpr auto operator op(std::tuple<Ts...> const &lhs, \ std::tuple<Ts...> const &rhs) { \ return apply2([](auto &&l, auto &&r) { return l op r; }, lhs, rhs); \ } \ template <class Tp, class Up> \ constexpr std::pair<Tp, Up> &operator op##=(std::pair<Tp, Up> &lhs, \ const std::pair<Tp, Up> &rhs) { \ lhs.first op## = rhs.first; \ lhs.second op## = rhs.second; \ return lhs; \ } \ template <class... Ts> \ constexpr auto operator op##=(std::tuple<Ts...> &lhs, \ const std::tuple<Ts...> &rhs) { \ return lhs = lhs op rhs; \ } OO_PTEQ_ (+)OO_PTEQ_ (-)OO_PTEQ_ (*)OO_PTEQ_ (/)OO_PTEQ_ (%)OO_PTEQ_ (&)OO_PTEQ_ (|)OO_PTEQ_ (^)OO_PTEQ_ (<<)OO_PTEQ_ (>>)#undef OO_PTEQ_ #undef TPL_SIZE_ template <class Tp , class Up >std::istream &operator >>(std::istream &is, std::pair<Tp, Up> &p) { return is >> p.first >> p.second; } template <class Tp , class Up >std::ostream &operator <<(std::ostream &os, const std::pair<Tp, Up> &p) { return os << p.first << ' ' << p.second; } template <typename ... Ts>std::istream &operator >>(std::istream &is, std::tuple<Ts...> &p) { std::apply ([&](Ts &...targs) { ((is >> targs), ...); }, p); return is; } template <typename ... Ts>std::ostream &operator <<(std::ostream &os, const std::tuple<Ts...> &p) { std::apply ( [&](Ts const &...targs) { std::size_t n{0 }; ((os << targs << (++n != sizeof ...(Ts) ? " " : "" )), ...); }, p); return os; } template < class Ch , class Tr , class Ct , std::enable_if_t <std::is_same<decltype (std::declval <Ct>().begin ()), typename Ct::iterator>::value && std::is_same<decltype (std::declval <Ct>().end ()), typename Ct::iterator>::value> * = nullptr > std::basic_ostream<Ch, Tr> &operator <<(std::basic_ostream<Ch, Tr> &os, const Ct &x) { if (x.begin () == x.end ()) return os; for (auto it = x.begin (); it != x.end () - 1 ; ++it) os << *it << ' ' ; os << x.back (); return os; } using namespace std;auto solve ([[maybe_unused]] int t_ = 0 ) -> void { read_var_ (i64, k); cout << k - 1 << '\n' ; } int main () { std::ios::sync_with_stdio (false ); std::cin.tie (nullptr ); int i_ = 0 ; int t_ = 0 ; std::cin >> t_; for (i_ = 0 ; i_ < t_; ++i_) solve (i_); return 0 ; }
B - Quick Sort You are given a permutation\(^\dagger\) \(p\) of length \(n\) and a positive integer \(k \le n\)
In one operation, you:
Choose \(k\) distinct elements \(p_{i_1}, p_{i_2}, \ldots, p_{i_k}\) Remove them and then add them sorted in increasing order to the end of the permutation For example, if \(p = [2,5,1,3,4]\) and \(k = 2\) and you choose \(5\) and \(3\) as the elements for the operation, then \([2, {\color{red}5}, 1, {\color{red}3}, 4] \rightarrow [2, 1, 4, {\color{red}3},{\color{red}5}]\)
Find the minimum number of operations needed to sort the permutation in increasing order. It can be proven that it is always possible to do so
\(^\dagger\) A permutation of length \(n\) is an array consisting of \(n\) distinct integers from \(1\) to \(n\) in arbitrary order. For example, \([2,3,1,5,4]\) is a permutation, but \([1,2,2]\) is not a permutation (\(2\) appears twice in the array), and \([1,3,4]\) is also not a permutation (\(n=3\) but there is \(4\) in the array)
The first line contains a single integer \(t\) (\(1 \le t \le 10^4\) ) — the number of test cases. The description of test cases follows
The first line of each test case contains two integers \(n\) and \(k\) (\(2 \le n \le 10^5\) , \(1 \le k \le n\) )
The second line of each test case contains \(n\) integers \(p_1,p_2,\ldots, p_n\) (\(1 \le p_i \le n\) ). It is guaranteed that \(p\) is a permutation
It is guaranteed that the sum of \(n\) over all test cases does not exceed \(10^5\)
Output For each test case output a single integer — the minimum number of operations needed to sort the permutation. It can be proven that it is always possible to do so
Example 1 2 3 4 5 6 7 8 9 4 3 2 1 2 3 3 1 3 1 2 4 2 1 3 2 4 4 2 2 3 1 4
output Note In the first test case, the permutation is already sorted
In the second test case, you can choose element \(3\) , and the permutation will become sorted as follows: \([{\color{red}3}, 1, 2] \rightarrow [1, 2, {\color{red}3}]\)
In the third test case, you can choose elements \(3\) and \(4\) , and the permutation will become sorted as follows: \([1, {\color{red}3}, 2, {\color{red}4}] \rightarrow [1, 2, {\color{red}3},{\color{red}4}]\)
In the fourth test case, it can be shown that it is impossible to sort the permutation in \(1\) operation. However, if you choose elements \(2\) and \(1\) in the first operation, and choose elements \(3\) and \(4\) in the second operation, the permutation will become sorted as follows: \([{\color{red}2}, 3, {\color{red}1}, 4] \rightarrow [{\color{blue}3}, {\color{blue}4}, {\color{red}1}, {\color{red}2}] \rightarrow [1,2, {\color{blue}3}, {\color{blue}4}]\)
代码参考
Show code
CodeForces_1768B view raw 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 #include <bits/stdc++.h> template <class Tp >using vc = std::vector<Tp>;struct CustomHash { static constexpr uint64_t splitmix64 (uint64_t x) { x += 0x9e3779b97f4a7c15 ; x = (x ^ (x >> 30 )) * 0xbf58476d1ce4e5b9 ; x = (x ^ (x >> 27 )) * 0x94d049bb133111eb ; return x ^ (x >> 31 ); } static constexpr size_t append (size_t x, size_t y) { return x ^ (y >> 1 ) ^ ((y & 1 ) << (sizeof (size_t ) * 8 - 1 )); } size_t operator () (uint64_t x) const { static const uint64_t FIXED_RANDOM = std::chrono::steady_clock::now ().time_since_epoch ().count (); return splitmix64 (x + FIXED_RANDOM); } template <class Tp , class Up > size_t operator () (std::pair<Tp, Up> const &p) const { return append ((*this )(p.first), (*this )(p.second)); } template <typename ... Ts> size_t operator () (std::tuple<Ts...> const &tp) const { size_t ret = 0 ; std::apply ( [&](Ts const &...targs) { ((ret = append (ret, (*this )(targs))), ...); }, tp); return ret; } template < class Tp , std::enable_if_t <std::is_same<decltype (std::declval <Tp>().begin ()), typename Tp::iterator>::value && std::is_same<decltype (std::declval <Tp>().end ()), typename Tp::iterator>::value> * = nullptr > size_t operator ()(Tp const &tp) const { size_t ret = 0 ; for (auto &&i : tp) ret = append (ret, (*this )(i)); return ret; } }; #define foreach_ref_(i, container) for (auto &i : (container)) #define read_var_(type, name) \ type name; \ std::cin >> name #define read_container_(type, name, size) \ type name(size); \ foreach_ref_(i, name) std::cin >> i template <class Tp >constexpr auto chkmin (Tp &a, Tp b) -> bool { return b < a ? a = b, true : false ; } template <class Tp >constexpr auto chkmax (Tp &a, Tp b) -> bool { return a < b ? a = b, true : false ; } template <class Tp >constexpr auto ispow2 (Tp i) -> bool { return i && (i & -i) == i; } #define TPL_SIZE_(Tuple) std::tuple_size_v<std::remove_reference_t<Tuple> > namespace tuple_detail_ {template <std::size_t Begin, class Tuple , std::size_t ... Is>constexpr auto subtuple_impl_ (Tuple &&t, std::index_sequence<Is...>) { return std::make_tuple (std::get <Is + Begin>(t)...); } template <class Tuple , class BinOp , std::size_t ... Is>constexpr auto apply2_impl_ (BinOp &&f, Tuple &&lhs, Tuple &&rhs, std::index_sequence<Is...>) { return std::make_tuple ( std::forward<BinOp>(f)(std::get <Is>(lhs), std::get <Is>(rhs))...); } } template <std::size_t Begin, std::size_t Len, class Tuple >constexpr auto subtuple (Tuple &&t) { static_assert (Begin <= TPL_SIZE_ (Tuple) && Len <= TPL_SIZE_ (Tuple) && Begin + Len <= TPL_SIZE_ (Tuple), "Out of range" ); return tuple_detail_::subtuple_impl_ <Begin>(t, std::make_index_sequence <Len>()); } template <std::size_t Pos, class Tp , class Tuple >constexpr auto tuple_push (Tp &&v, Tuple &&t) { static_assert (TPL_SIZE_ (Tuple) > 0 , "Pop from empty tuple" ); return std::tuple_cat (subtuple <0 , Pos>(t), std::make_tuple (v), subtuple <Pos, TPL_SIZE_ (Tuple) - Pos>(t)); } template <class Tp , class Tuple >constexpr auto tuple_push_front (Tp &&v, Tuple &&t) { return tuple_push <0 >(v, t); } template <class Tp , class Tuple >constexpr auto tuple_push_back (Tp &&v, Tuple &&t) { return tuple_push <TPL_SIZE_ (Tuple)>(v, t); } template <std::size_t Pos, class Tuple >constexpr auto tuple_pop (Tuple &&t) { static_assert (TPL_SIZE_ (Tuple) > 0 , "Pop from empty tuple" ); return std::tuple_cat (subtuple <0 , Pos>(t), subtuple <Pos + 1 , TPL_SIZE_ (Tuple) - Pos - 1 >(t)); } template <class Tuple >constexpr auto tuple_pop_front (Tuple &&t) { return tuple_pop <0 >(t); } template <class Tuple >constexpr auto tuple_pop_back (Tuple &&t) { return tuple_pop <TPL_SIZE_ (Tuple) - 1 >(t); } template <class Tuple , class BinOp >constexpr auto apply2 (BinOp &&f, Tuple &&lhs, Tuple &&rhs) { return tuple_detail_::apply2_impl_ ( f, lhs, rhs, std::make_index_sequence <TPL_SIZE_ (Tuple)>()); } #define OO_PTEQ_(op) \ template <class Tp, class Up> \ constexpr auto operator op(std::pair<Tp, Up> lhs, \ const std::pair<Tp, Up> &rhs) { \ return std::pair<Tp, Up> {lhs.first op rhs.first, \ lhs.second op rhs.second}; \ } \ template <class... Ts> \ constexpr auto operator op(std::tuple<Ts...> const &lhs, \ std::tuple<Ts...> const &rhs) { \ return apply2([](auto &&l, auto &&r) { return l op r; }, lhs, rhs); \ } \ template <class Tp, class Up> \ constexpr std::pair<Tp, Up> &operator op##=(std::pair<Tp, Up> &lhs, \ const std::pair<Tp, Up> &rhs) { \ lhs.first op## = rhs.first; \ lhs.second op## = rhs.second; \ return lhs; \ } \ template <class... Ts> \ constexpr auto operator op##=(std::tuple<Ts...> &lhs, \ const std::tuple<Ts...> &rhs) { \ return lhs = lhs op rhs; \ } OO_PTEQ_ (+)OO_PTEQ_ (-)OO_PTEQ_ (*)OO_PTEQ_ (/)OO_PTEQ_ (%)OO_PTEQ_ (&)OO_PTEQ_ (|)OO_PTEQ_ (^)OO_PTEQ_ (<<)OO_PTEQ_ (>>)#undef OO_PTEQ_ #undef TPL_SIZE_ template <class Tp , class Up >std::istream &operator >>(std::istream &is, std::pair<Tp, Up> &p) { return is >> p.first >> p.second; } template <class Tp , class Up >std::ostream &operator <<(std::ostream &os, const std::pair<Tp, Up> &p) { return os << p.first << ' ' << p.second; } template <typename ... Ts>std::istream &operator >>(std::istream &is, std::tuple<Ts...> &p) { std::apply ([&](Ts &...targs) { ((is >> targs), ...); }, p); return is; } template <typename ... Ts>std::ostream &operator <<(std::ostream &os, const std::tuple<Ts...> &p) { std::apply ( [&](Ts const &...targs) { std::size_t n{0 }; ((os << targs << (++n != sizeof ...(Ts) ? " " : "" )), ...); }, p); return os; } template < class Ch , class Tr , class Ct , std::enable_if_t <std::is_same<decltype (std::declval <Ct>().begin ()), typename Ct::iterator>::value && std::is_same<decltype (std::declval <Ct>().end ()), typename Ct::iterator>::value> * = nullptr > std::basic_ostream<Ch, Tr> &operator <<(std::basic_ostream<Ch, Tr> &os, const Ct &x) { if (x.begin () == x.end ()) return os; for (auto it = x.begin (); it != x.end () - 1 ; ++it) os << *it << ' ' ; os << x.back (); return os; } using namespace std;auto solve ([[maybe_unused]] int t_ = 0 ) -> void { read_var_ (int , n); read_var_ (int , k); read_container_ (vc<int >, p, n); int last = 1 ; int cnt = 0 ; for (auto now : p) { if (now > last) ++cnt; else if (now == last) ++last; } cout << (cnt + k - 1 ) / k << '\n' ; } int main () { std::ios::sync_with_stdio (false ); std::cin.tie (nullptr ); int i_ = 0 ; int t_ = 0 ; std::cin >> t_; for (i_ = 0 ; i_ < t_; ++i_) solve (i_); return 0 ; }
C - Elemental Decompress You are given an array \(a\) of \(n\) integers
Find two permutations\(^\dagger\) \(p\) and \(q\) of length \(n\) such that \(\max(p_i,q_i)=a_i\) for all \(1 \leq i \leq n\) or report that such \(p\) and \(q\) do not exist
\(^\dagger\) A permutation of length \(n\) is an array consisting of \(n\) distinct integers from \(1\) to \(n\) in arbitrary order. For example, \([2,3,1,5,4]\) is a permutation, but \([1,2,2]\) is not a permutation (\(2\) appears twice in the array), and \([1,3,4]\) is also not a permutation (\(n=3\) but there is \(4\) in the array)
The first line contains a single integer \(t\) (\(1 \le t \le 10^4\) ) — the number of test cases. The description of test cases follows
The first line of each test case contains a single integer \(n\) (\(1 \le n \le 2 \cdot 10^5\) )
The second line of each test case contains \(n\) integers \(a_1,a_2,\ldots,a_n\) (\(1 \leq a_i \leq n\) ) — the array \(a\)
It is guaranteed that the total sum of \(n\) over all test cases does not exceed \(2 \cdot 10^5\)
Output For each test case, if there do not exist \(p\) and \(q\) that satisfy the conditions, output "NO
" (without quotes)
Otherwise, output "YES
" (without quotes) and then output \(2\) lines. The first line should contain \(n\) integers \(p_1,p_2,\ldots,p_n\) and the second line should contain \(n\) integers \(q_1,q_2,\ldots,q_n\)
If there are multiple solutions, you may output any of them
You can output "YES
" and "NO
" in any case (for example, strings "yEs
", "yes
" and "Yes
" will be recognized as a positive response)
Example output 1 2 3 4 5 6 7 YES 1 1 YES 1 3 4 2 5 5 2 3 1 4 NO
Note In the first test case, \(p=q=[1]\) . It is correct since \(a_1 = max(p_1,q_1) = 1\)
In the second test case, \(p=[1,3,4,2,5]\) and \(q=[5,2,3,1,4]\) . It is correct since:
\(a_1 = \max(p_1, q_1) = \max(1, 5) = 5\) ,\(a_2 = \max(p_2, q_2) = \max(3, 2) = 3\) ,\(a_3 = \max(p_3, q_3) = \max(4, 3) = 4\) ,\(a_4 = \max(p_4, q_4) = \max(2, 1) = 2\) ,\(a_5 = \max(p_5, q_5) = \max(5, 4) = 5\) In the third test case, one can show that no such \(p\) and \(q\) exist
代码参考
Show code
CodeForces_1768C view raw 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 #include <bits/stdc++.h> template <class Tp >using vc = std::vector<Tp>;template <class Tp >using vvc = std::vector<std::vector<Tp>>;struct CustomHash { static constexpr uint64_t splitmix64 (uint64_t x) { x += 0x9e3779b97f4a7c15 ; x = (x ^ (x >> 30 )) * 0xbf58476d1ce4e5b9 ; x = (x ^ (x >> 27 )) * 0x94d049bb133111eb ; return x ^ (x >> 31 ); } static constexpr size_t append (size_t x, size_t y) { return x ^ (y >> 1 ) ^ ((y & 1 ) << (sizeof (size_t ) * 8 - 1 )); } size_t operator () (uint64_t x) const { static const uint64_t FIXED_RANDOM = std::chrono::steady_clock::now ().time_since_epoch ().count (); return splitmix64 (x + FIXED_RANDOM); } template <class Tp , class Up > size_t operator () (std::pair<Tp, Up> const &p) const { return append ((*this )(p.first), (*this )(p.second)); } template <typename ... Ts> size_t operator () (std::tuple<Ts...> const &tp) const { size_t ret = 0 ; std::apply ( [&](Ts const &...targs) { ((ret = append (ret, (*this )(targs))), ...); }, tp); return ret; } template < class Tp , std::enable_if_t <std::is_same<decltype (std::declval <Tp>().begin ()), typename Tp::iterator>::value && std::is_same<decltype (std::declval <Tp>().end ()), typename Tp::iterator>::value> * = nullptr > size_t operator ()(Tp const &tp) const { size_t ret = 0 ; for (auto &&i : tp) ret = append (ret, (*this )(i)); return ret; } }; #define for_(i, l, r, vars...) \ for (std::make_signed_t<decltype(l + r)> i = (l), i##end = (r), ##vars; \ i <= i##end; \ ++i) #define rfor_(i, r, l, vars...) \ for (std::make_signed_t<decltype(r - l)> i = (r), i##end = (l), ##vars; \ i >= i##end; \ --i) #define foreach_ref_(i, container) for (auto &i : (container)) #define run_exec_(expressions, post_process) \ { \ expressions; \ post_process; \ } #define run_return_void_(expressions) run_exec_(expressions, return) #define read_var_(type, name) \ type name; \ std::cin >> name #define read_container_(type, name, size) \ type name(size); \ foreach_ref_(i, name) std::cin >> i template <class Tp >constexpr auto chkmin (Tp &a, Tp b) -> bool { return b < a ? a = b, true : false ; } template <class Tp >constexpr auto chkmax (Tp &a, Tp b) -> bool { return a < b ? a = b, true : false ; } template <class Tp >constexpr auto ispow2 (Tp i) -> bool { return i && (i & -i) == i; } #define TPL_SIZE_(Tuple) std::tuple_size_v<std::remove_reference_t<Tuple> > namespace tuple_detail_ {template <std::size_t Begin, class Tuple , std::size_t ... Is>constexpr auto subtuple_impl_ (Tuple &&t, std::index_sequence<Is...>) { return std::make_tuple (std::get <Is + Begin>(t)...); } template <class Tuple , class BinOp , std::size_t ... Is>constexpr auto apply2_impl_ (BinOp &&f, Tuple &&lhs, Tuple &&rhs, std::index_sequence<Is...>) { return std::make_tuple ( std::forward<BinOp>(f)(std::get <Is>(lhs), std::get <Is>(rhs))...); } } template <std::size_t Begin, std::size_t Len, class Tuple >constexpr auto subtuple (Tuple &&t) { static_assert (Begin <= TPL_SIZE_ (Tuple) && Len <= TPL_SIZE_ (Tuple) && Begin + Len <= TPL_SIZE_ (Tuple), "Out of range" ); return tuple_detail_::subtuple_impl_ <Begin>(t, std::make_index_sequence <Len>()); } template <std::size_t Pos, class Tp , class Tuple >constexpr auto tuple_push (Tp &&v, Tuple &&t) { static_assert (TPL_SIZE_ (Tuple) > 0 , "Pop from empty tuple" ); return std::tuple_cat (subtuple <0 , Pos>(t), std::make_tuple (v), subtuple <Pos, TPL_SIZE_ (Tuple) - Pos>(t)); } template <class Tp , class Tuple >constexpr auto tuple_push_front (Tp &&v, Tuple &&t) { return tuple_push <0 >(v, t); } template <class Tp , class Tuple >constexpr auto tuple_push_back (Tp &&v, Tuple &&t) { return tuple_push <TPL_SIZE_ (Tuple)>(v, t); } template <std::size_t Pos, class Tuple >constexpr auto tuple_pop (Tuple &&t) { static_assert (TPL_SIZE_ (Tuple) > 0 , "Pop from empty tuple" ); return std::tuple_cat (subtuple <0 , Pos>(t), subtuple <Pos + 1 , TPL_SIZE_ (Tuple) - Pos - 1 >(t)); } template <class Tuple >constexpr auto tuple_pop_front (Tuple &&t) { return tuple_pop <0 >(t); } template <class Tuple >constexpr auto tuple_pop_back (Tuple &&t) { return tuple_pop <TPL_SIZE_ (Tuple) - 1 >(t); } template <class Tuple , class BinOp >constexpr auto apply2 (BinOp &&f, Tuple &&lhs, Tuple &&rhs) { return tuple_detail_::apply2_impl_ ( f, lhs, rhs, std::make_index_sequence <TPL_SIZE_ (Tuple)>()); } #define OO_PTEQ_(op) \ template <class Tp, class Up> \ constexpr auto operator op(std::pair<Tp, Up> lhs, \ const std::pair<Tp, Up> &rhs) { \ return std::pair<Tp, Up> {lhs.first op rhs.first, \ lhs.second op rhs.second}; \ } \ template <class... Ts> \ constexpr auto operator op(std::tuple<Ts...> const &lhs, \ std::tuple<Ts...> const &rhs) { \ return apply2([](auto &&l, auto &&r) { return l op r; }, lhs, rhs); \ } \ template <class Tp, class Up> \ constexpr std::pair<Tp, Up> &operator op##=(std::pair<Tp, Up> &lhs, \ const std::pair<Tp, Up> &rhs) { \ lhs.first op## = rhs.first; \ lhs.second op## = rhs.second; \ return lhs; \ } \ template <class... Ts> \ constexpr auto operator op##=(std::tuple<Ts...> &lhs, \ const std::tuple<Ts...> &rhs) { \ return lhs = lhs op rhs; \ } OO_PTEQ_ (+)OO_PTEQ_ (-)OO_PTEQ_ (*)OO_PTEQ_ (/)OO_PTEQ_ (%)OO_PTEQ_ (&)OO_PTEQ_ (|)OO_PTEQ_ (^)OO_PTEQ_ (<<)OO_PTEQ_ (>>)#undef OO_PTEQ_ #undef TPL_SIZE_ template <class Tp , class Up >std::istream &operator >>(std::istream &is, std::pair<Tp, Up> &p) { return is >> p.first >> p.second; } template <class Tp , class Up >std::ostream &operator <<(std::ostream &os, const std::pair<Tp, Up> &p) { return os << p.first << ' ' << p.second; } template <typename ... Ts>std::istream &operator >>(std::istream &is, std::tuple<Ts...> &p) { std::apply ([&](Ts &...targs) { ((is >> targs), ...); }, p); return is; } template <typename ... Ts>std::ostream &operator <<(std::ostream &os, const std::tuple<Ts...> &p) { std::apply ( [&](Ts const &...targs) { std::size_t n{0 }; ((os << targs << (++n != sizeof ...(Ts) ? " " : "" )), ...); }, p); return os; } template < class Ch , class Tr , class Ct , std::enable_if_t <std::is_same<decltype (std::declval <Ct>().begin ()), typename Ct::iterator>::value && std::is_same<decltype (std::declval <Ct>().end ()), typename Ct::iterator>::value> * = nullptr > std::basic_ostream<Ch, Tr> &operator <<(std::basic_ostream<Ch, Tr> &os, const Ct &x) { if (x.begin () == x.end ()) return os; for (auto it = x.begin (); it != x.end () - 1 ; ++it) os << *it << ' ' ; os << x.back (); return os; } const std::string RES_YN[2 ] = {"NO" , "YES" };using namespace std;vc<int > _(1 ); struct Node { vc<int >::iterator pos; int lim; Node (vc<int >::iterator pos, int lim): pos (pos), lim (lim) {} bool operator <(Node const &rhs) const { return lim < rhs.lim; } }; auto solve ([[maybe_unused]] int t_ = 0 ) -> void { read_var_ (int , n); read_container_ (vc<int >, a, n); vc<int > p (n) , q (n) ; vvc<int > idx (n + 1 ) ; for (auto &i : idx) i.reserve (2 ); for_(i, 0 , n - 1 ) { if (idx[a[i]].size () >= 2 ) run_return_void_ (cout << RES_YN[0 ] << '\n' ); idx[a[i]].push_back (i); } vvc<int > cat (3 ) ; rfor_ (i, n, 1 ) cat[idx[i].size ()].push_back (i); for (auto v : cat[2 ]) p[idx[v][0 ]] = q[idx[v][1 ]] = v; for (auto v : cat[1 ]) p[idx[v][0 ]] = q[idx[v][0 ]] = v; multiset<Node> rest; for_(i, 0 , n - 1 ) if (!p[i]) rest.emplace (p.begin () + i, q[i]); else if (!q[i]) rest.emplace (q.begin () + i, p[i]); for (auto v : cat[0 ]) for_(__, 0 , 1 ) { auto it = rest.lower_bound (Node{_.begin (), v}); if (it == rest.end () || it->lim < v) run_return_void_ (cout << RES_YN[0 ] << '\n' ); *(it->pos) = v; rest.erase (it); } cout << RES_YN[1 ] << '\n' << p << '\n' << q << '\n' ; } int main () { std::ios::sync_with_stdio (false ); std::cin.tie (nullptr ); int i_ = 0 ; int t_ = 0 ; std::cin >> t_; for (i_ = 0 ; i_ < t_; ++i_) solve (i_); return 0 ; }
D - Lucky Permutation You are given a permutation\(^\dagger\) \(p\) of length \(n\)
In one operation, you can choose two indices \(1 \le i < j \le n\) and swap \(p_i\) with \(p_j\)
Find the minimum number of operations needed to have exactly one inversion\(^\ddagger\) in the permutation
\(^\dagger\) A permutation is an array consisting of \(n\) distinct integers from \(1\) to \(n\) in arbitrary order. For example, \([2,3,1,5,4]\) is a permutation, but \([1,2,2]\) is not a permutation (\(2\) appears twice in the array), and \([1,3,4]\) is also not a permutation (\(n=3\) but there is \(4\) in the array)
\(^\ddagger\) The number of inversions of a permutation \(p\) is the number of pairs of indices \((i, j)\) such that \(1 \le i < j \le n\) and \(p_i > p_j\)
The first line contains a single integer \(t\) (\(1 \le t \le 10^4\) ) — the number of test cases. The description of test cases follows
The first line of each test case contains a single integer \(n\) (\(2 \le n \le 2 \cdot 10^5\) )
The second line of each test case contains \(n\) integers \(p_1,p_2,\ldots, p_n\) (\(1 \le p_i \le n\) ). It is guaranteed that \(p\) is a permutation
It is guaranteed that the sum of \(n\) over all test cases does not exceed \(2 \cdot 10^5\)
Output For each test case output a single integer — the minimum number of operations needed to have exactly one inversion in the permutation. It can be proven that an answer always exists
Example 1 2 3 4 5 6 7 8 9 4 2 2 1 2 1 2 4 3 4 1 2 4 2 4 3 1
output Note In the first test case, the permutation already satisfies the condition
In the second test case, you can perform the operation with \((i,j)=(1,2)\) , after that the permutation will be \([2,1]\) which has exactly one inversion
In the third test case, it is not possible to satisfy the condition with less than \(3\) operations. However, if we perform \(3\) operations with \((i,j)\) being \((1,3)\) ,\((2,4)\) , and \((3,4)\) in that order, the final permutation will be \([1, 2, 4, 3]\) which has exactly one inversion
In the fourth test case, you can perform the operation with \((i,j)=(2,4)\) , after that the permutation will be \([2,1,3,4]\) which has exactly one inversion
代码参考
Show code
CodeForces_1768D view raw 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 #include <bits/stdc++.h> template <class Tp >using vc = std::vector<Tp>;struct CustomHash { static constexpr uint64_t splitmix64 (uint64_t x) { x += 0x9e3779b97f4a7c15 ; x = (x ^ (x >> 30 )) * 0xbf58476d1ce4e5b9 ; x = (x ^ (x >> 27 )) * 0x94d049bb133111eb ; return x ^ (x >> 31 ); } static constexpr size_t append (size_t x, size_t y) { return x ^ (y >> 1 ) ^ ((y & 1 ) << (sizeof (size_t ) * 8 - 1 )); } size_t operator () (uint64_t x) const { static const uint64_t FIXED_RANDOM = std::chrono::steady_clock::now ().time_since_epoch ().count (); return splitmix64 (x + FIXED_RANDOM); } template <class Tp , class Up > size_t operator () (std::pair<Tp, Up> const &p) const { return append ((*this )(p.first), (*this )(p.second)); } template <typename ... Ts> size_t operator () (std::tuple<Ts...> const &tp) const { size_t ret = 0 ; std::apply ( [&](Ts const &...targs) { ((ret = append (ret, (*this )(targs))), ...); }, tp); return ret; } template < class Tp , std::enable_if_t <std::is_same<decltype (std::declval <Tp>().begin ()), typename Tp::iterator>::value && std::is_same<decltype (std::declval <Tp>().end ()), typename Tp::iterator>::value> * = nullptr > size_t operator ()(Tp const &tp) const { size_t ret = 0 ; for (auto &&i : tp) ret = append (ret, (*this )(i)); return ret; } }; #define for_(i, l, r, vars...) \ for (std::make_signed_t<decltype(l + r)> i = (l), i##end = (r), ##vars; \ i <= i##end; \ ++i) #define all_(a) (a).begin(), (a).end() #define run_exec_(expressions, post_process) \ { \ expressions; \ post_process; \ } #define run_return_void_(expressions) run_exec_(expressions, return) #define run_break_(expressions) run_exec_(expressions, break) #define read_var_(type, name) \ type name; \ std::cin >> name template <class Tp >constexpr auto chkmin (Tp &a, Tp b) -> bool { return b < a ? a = b, true : false ; } template <class Tp >constexpr auto chkmax (Tp &a, Tp b) -> bool { return a < b ? a = b, true : false ; } template <class Tp >constexpr auto ispow2 (Tp i) -> bool { return i && (i & -i) == i; } #define TPL_SIZE_(Tuple) std::tuple_size_v<std::remove_reference_t<Tuple> > namespace tuple_detail_ {template <std::size_t Begin, class Tuple , std::size_t ... Is>constexpr auto subtuple_impl_ (Tuple &&t, std::index_sequence<Is...>) { return std::make_tuple (std::get <Is + Begin>(t)...); } template <class Tuple , class BinOp , std::size_t ... Is>constexpr auto apply2_impl_ (BinOp &&f, Tuple &&lhs, Tuple &&rhs, std::index_sequence<Is...>) { return std::make_tuple ( std::forward<BinOp>(f)(std::get <Is>(lhs), std::get <Is>(rhs))...); } } template <std::size_t Begin, std::size_t Len, class Tuple >constexpr auto subtuple (Tuple &&t) { static_assert (Begin <= TPL_SIZE_ (Tuple) && Len <= TPL_SIZE_ (Tuple) && Begin + Len <= TPL_SIZE_ (Tuple), "Out of range" ); return tuple_detail_::subtuple_impl_ <Begin>(t, std::make_index_sequence <Len>()); } template <std::size_t Pos, class Tp , class Tuple >constexpr auto tuple_push (Tp &&v, Tuple &&t) { static_assert (TPL_SIZE_ (Tuple) > 0 , "Pop from empty tuple" ); return std::tuple_cat (subtuple <0 , Pos>(t), std::make_tuple (v), subtuple <Pos, TPL_SIZE_ (Tuple) - Pos>(t)); } template <class Tp , class Tuple >constexpr auto tuple_push_front (Tp &&v, Tuple &&t) { return tuple_push <0 >(v, t); } template <class Tp , class Tuple >constexpr auto tuple_push_back (Tp &&v, Tuple &&t) { return tuple_push <TPL_SIZE_ (Tuple)>(v, t); } template <std::size_t Pos, class Tuple >constexpr auto tuple_pop (Tuple &&t) { static_assert (TPL_SIZE_ (Tuple) > 0 , "Pop from empty tuple" ); return std::tuple_cat (subtuple <0 , Pos>(t), subtuple <Pos + 1 , TPL_SIZE_ (Tuple) - Pos - 1 >(t)); } template <class Tuple >constexpr auto tuple_pop_front (Tuple &&t) { return tuple_pop <0 >(t); } template <class Tuple >constexpr auto tuple_pop_back (Tuple &&t) { return tuple_pop <TPL_SIZE_ (Tuple) - 1 >(t); } template <class Tuple , class BinOp >constexpr auto apply2 (BinOp &&f, Tuple &&lhs, Tuple &&rhs) { return tuple_detail_::apply2_impl_ ( f, lhs, rhs, std::make_index_sequence <TPL_SIZE_ (Tuple)>()); } #define OO_PTEQ_(op) \ template <class Tp, class Up> \ constexpr auto operator op(std::pair<Tp, Up> lhs, \ const std::pair<Tp, Up> &rhs) { \ return std::pair<Tp, Up> {lhs.first op rhs.first, \ lhs.second op rhs.second}; \ } \ template <class... Ts> \ constexpr auto operator op(std::tuple<Ts...> const &lhs, \ std::tuple<Ts...> const &rhs) { \ return apply2([](auto &&l, auto &&r) { return l op r; }, lhs, rhs); \ } \ template <class Tp, class Up> \ constexpr std::pair<Tp, Up> &operator op##=(std::pair<Tp, Up> &lhs, \ const std::pair<Tp, Up> &rhs) { \ lhs.first op## = rhs.first; \ lhs.second op## = rhs.second; \ return lhs; \ } \ template <class... Ts> \ constexpr auto operator op##=(std::tuple<Ts...> &lhs, \ const std::tuple<Ts...> &rhs) { \ return lhs = lhs op rhs; \ } OO_PTEQ_ (+)OO_PTEQ_ (-)OO_PTEQ_ (*)OO_PTEQ_ (/)OO_PTEQ_ (%)OO_PTEQ_ (&)OO_PTEQ_ (|)OO_PTEQ_ (^)OO_PTEQ_ (<<)OO_PTEQ_ (>>)#undef OO_PTEQ_ #undef TPL_SIZE_ template <class Tp , class Up >std::istream &operator >>(std::istream &is, std::pair<Tp, Up> &p) { return is >> p.first >> p.second; } template <class Tp , class Up >std::ostream &operator <<(std::ostream &os, const std::pair<Tp, Up> &p) { return os << p.first << ' ' << p.second; } template <typename ... Ts>std::istream &operator >>(std::istream &is, std::tuple<Ts...> &p) { std::apply ([&](Ts &...targs) { ((is >> targs), ...); }, p); return is; } template <typename ... Ts>std::ostream &operator <<(std::ostream &os, const std::tuple<Ts...> &p) { std::apply ( [&](Ts const &...targs) { std::size_t n{0 }; ((os << targs << (++n != sizeof ...(Ts) ? " " : "" )), ...); }, p); return os; } template < class Ch , class Tr , class Ct , std::enable_if_t <std::is_same<decltype (std::declval <Ct>().begin ()), typename Ct::iterator>::value && std::is_same<decltype (std::declval <Ct>().end ()), typename Ct::iterator>::value> * = nullptr > std::basic_ostream<Ch, Tr> &operator <<(std::basic_ostream<Ch, Tr> &os, const Ct &x) { if (x.begin () == x.end ()) return os; for (auto it = x.begin (); it != x.end () - 1 ; ++it) os << *it << ' ' ; os << x.back (); return os; } using namespace std;vc<int > _(1 ); struct Node { vc<int >::iterator pos; int lim; Node (vc<int >::iterator pos, int lim): pos (pos), lim (lim) {} bool operator <(Node const &rhs) const { return lim < rhs.lim; } }; auto solve ([[maybe_unused]] int t_ = 0 ) -> void { read_var_ (int , n); vc<int > a (n + 1 ) ; for_(i, 1 , n) cin >> a[i]; if (is_sorted (all_ (a))) run_return_void_ (cout << "1\n" ); int ans = 0 ; vc<bool > vis (n + 1 ) ; bool f = 0 ; for_(i, 1 , n) { if (vis[i]) continue ; int now = i; vc<int > p; while (!vis[now]) { vis[now] = 1 ; p.push_back (now); now = a[now]; } if (p.size () < 2 ) continue ; ans += p.size () - 1 ; sort (all_ (p)); if (!f) for_(j, 0 , p.size () - 2 ) if (abs (p[j] - p[j + 1 ]) == 1 ) run_break_ (f = 1 ); } cout << ans + (f ? -1 : 1 ) << '\n' ; } int main () { std::ios::sync_with_stdio (false ); std::cin.tie (nullptr ); int i_ = 0 ; int t_ = 0 ; std::cin >> t_; for (i_ = 0 ; i_ < t_; ++i_) solve (i_); return 0 ; }
E - Partial Sorting Consider a permutation\(^\dagger\) \(p\) of length \(3n\) . Each time you can do one of the following operations:
Sort the first \(2n\) elements in increasing order Sort the last \(2n\) elements in increasing order We can show that every permutation can be made sorted in increasing order using only these operations. Let's call \(f(p)\) the minimum number of these operations needed to make the permutation \(p\) sorted in increasing order
Given \(n\) , find the sum of \(f(p)\) over all \((3n)!\) permutations \(p\) of size \(3n\)
Since the answer could be very large, output it modulo a prime \(M\)
\(^\dagger\) A permutation of length \(n\) is an array consisting of \(n\) distinct integers from \(1\) to \(n\) in arbitrary order. For example, \([2,3,1,5,4]\) is a permutation, but \([1,2,2]\) is not a permutation (\(2\) appears twice in the array), and \([1,3,4]\) is also not a permutation (\(n=3\) but there is \(4\) in the array)
The only line of input contains two numbers \(n\) and \(M\) (\(1 \leq n \leq 10^6\) , \(10^8 \leq M \leq 10^9\) ). It is guaranteed that \(M\) is a prime number
Output Output the answer modulo \(M\)
Examples output output output Note In the first test case, all the permutations are:
\([1, 2, 3]\) , which requires \(0\) operations;\([1, 3, 2]\) , which requires \(1\) operation;\([2, 1, 3]\) , which requires \(1\) operation;\([2, 3, 1]\) , which requires \(2\) operations;\([3, 1, 2]\) , which requires \(2\) operations;\([3, 2, 1]\) , which requires \(3\) operationsTherefore, the answer is \(0+1+1+2+2+3=9\)
代码参考
Show code
CodeForces_1768E view raw 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 #include <bits/stdc++.h> template <class Tp >using vc = std::vector<Tp>;struct CustomHash { static constexpr uint64_t splitmix64 (uint64_t x) { x += 0x9e3779b97f4a7c15 ; x = (x ^ (x >> 30 )) * 0xbf58476d1ce4e5b9 ; x = (x ^ (x >> 27 )) * 0x94d049bb133111eb ; return x ^ (x >> 31 ); } static constexpr size_t append (size_t x, size_t y) { return x ^ (y >> 1 ) ^ ((y & 1 ) << (sizeof (size_t ) * 8 - 1 )); } size_t operator () (uint64_t x) const { static const uint64_t FIXED_RANDOM = std::chrono::steady_clock::now ().time_since_epoch ().count (); return splitmix64 (x + FIXED_RANDOM); } template <class Tp , class Up > size_t operator () (std::pair<Tp, Up> const &p) const { return append ((*this )(p.first), (*this )(p.second)); } template <typename ... Ts> size_t operator () (std::tuple<Ts...> const &tp) const { size_t ret = 0 ; std::apply ( [&](Ts const &...targs) { ((ret = append (ret, (*this )(targs))), ...); }, tp); return ret; } template < class Tp , std::enable_if_t <std::is_same<decltype (std::declval <Tp>().begin ()), typename Tp::iterator>::value && std::is_same<decltype (std::declval <Tp>().end ()), typename Tp::iterator>::value> * = nullptr > size_t operator ()(Tp const &tp) const { size_t ret = 0 ; for (auto &&i : tp) ret = append (ret, (*this )(i)); return ret; } }; using u32 = uint32_t ;#define for_(i, l, r, vars...) \ for (std::make_signed_t<decltype(l + r)> i = (l), i##end = (r), ##vars; \ i <= i##end; \ ++i) #define rfor_(i, r, l, vars...) \ for (std::make_signed_t<decltype(r - l)> i = (r), i##end = (l), ##vars; \ i >= i##end; \ --i) template <class Tp >constexpr auto chkmin (Tp &a, Tp b) -> bool { return b < a ? a = b, true : false ; } template <class Tp >constexpr auto chkmax (Tp &a, Tp b) -> bool { return a < b ? a = b, true : false ; } template <class Tp >constexpr auto ispow2 (Tp i) -> bool { return i && (i & -i) == i; } #define TPL_SIZE_(Tuple) std::tuple_size_v<std::remove_reference_t<Tuple> > namespace tuple_detail_ {template <std::size_t Begin, class Tuple , std::size_t ... Is>constexpr auto subtuple_impl_ (Tuple &&t, std::index_sequence<Is...>) { return std::make_tuple (std::get <Is + Begin>(t)...); } template <class Tuple , class BinOp , std::size_t ... Is>constexpr auto apply2_impl_ (BinOp &&f, Tuple &&lhs, Tuple &&rhs, std::index_sequence<Is...>) { return std::make_tuple ( std::forward<BinOp>(f)(std::get <Is>(lhs), std::get <Is>(rhs))...); } } template <std::size_t Begin, std::size_t Len, class Tuple >constexpr auto subtuple (Tuple &&t) { static_assert (Begin <= TPL_SIZE_ (Tuple) && Len <= TPL_SIZE_ (Tuple) && Begin + Len <= TPL_SIZE_ (Tuple), "Out of range" ); return tuple_detail_::subtuple_impl_ <Begin>(t, std::make_index_sequence <Len>()); } template <std::size_t Pos, class Tp , class Tuple >constexpr auto tuple_push (Tp &&v, Tuple &&t) { static_assert (TPL_SIZE_ (Tuple) > 0 , "Pop from empty tuple" ); return std::tuple_cat (subtuple <0 , Pos>(t), std::make_tuple (v), subtuple <Pos, TPL_SIZE_ (Tuple) - Pos>(t)); } template <class Tp , class Tuple >constexpr auto tuple_push_front (Tp &&v, Tuple &&t) { return tuple_push <0 >(v, t); } template <class Tp , class Tuple >constexpr auto tuple_push_back (Tp &&v, Tuple &&t) { return tuple_push <TPL_SIZE_ (Tuple)>(v, t); } template <std::size_t Pos, class Tuple >constexpr auto tuple_pop (Tuple &&t) { static_assert (TPL_SIZE_ (Tuple) > 0 , "Pop from empty tuple" ); return std::tuple_cat (subtuple <0 , Pos>(t), subtuple <Pos + 1 , TPL_SIZE_ (Tuple) - Pos - 1 >(t)); } template <class Tuple >constexpr auto tuple_pop_front (Tuple &&t) { return tuple_pop <0 >(t); } template <class Tuple >constexpr auto tuple_pop_back (Tuple &&t) { return tuple_pop <TPL_SIZE_ (Tuple) - 1 >(t); } template <class Tuple , class BinOp >constexpr auto apply2 (BinOp &&f, Tuple &&lhs, Tuple &&rhs) { return tuple_detail_::apply2_impl_ ( f, lhs, rhs, std::make_index_sequence <TPL_SIZE_ (Tuple)>()); } #define OO_PTEQ_(op) \ template <class Tp, class Up> \ constexpr auto operator op(std::pair<Tp, Up> lhs, \ const std::pair<Tp, Up> &rhs) { \ return std::pair<Tp, Up> {lhs.first op rhs.first, \ lhs.second op rhs.second}; \ } \ template <class... Ts> \ constexpr auto operator op(std::tuple<Ts...> const &lhs, \ std::tuple<Ts...> const &rhs) { \ return apply2([](auto &&l, auto &&r) { return l op r; }, lhs, rhs); \ } \ template <class Tp, class Up> \ constexpr std::pair<Tp, Up> &operator op##=(std::pair<Tp, Up> &lhs, \ const std::pair<Tp, Up> &rhs) { \ lhs.first op## = rhs.first; \ lhs.second op## = rhs.second; \ return lhs; \ } \ template <class... Ts> \ constexpr auto operator op##=(std::tuple<Ts...> &lhs, \ const std::tuple<Ts...> &rhs) { \ return lhs = lhs op rhs; \ } OO_PTEQ_ (+)OO_PTEQ_ (-)OO_PTEQ_ (*)OO_PTEQ_ (/)OO_PTEQ_ (%)OO_PTEQ_ (&)OO_PTEQ_ (|)OO_PTEQ_ (^)OO_PTEQ_ (<<)OO_PTEQ_ (>>)#undef OO_PTEQ_ #undef TPL_SIZE_ template <class Tp , class Up >std::istream &operator >>(std::istream &is, std::pair<Tp, Up> &p) { return is >> p.first >> p.second; } template <class Tp , class Up >std::ostream &operator <<(std::ostream &os, const std::pair<Tp, Up> &p) { return os << p.first << ' ' << p.second; } template <typename ... Ts>std::istream &operator >>(std::istream &is, std::tuple<Ts...> &p) { std::apply ([&](Ts &...targs) { ((is >> targs), ...); }, p); return is; } template <typename ... Ts>std::ostream &operator <<(std::ostream &os, const std::tuple<Ts...> &p) { std::apply ( [&](Ts const &...targs) { std::size_t n{0 }; ((os << targs << (++n != sizeof ...(Ts) ? " " : "" )), ...); }, p); return os; } template < class Ch , class Tr , class Ct , std::enable_if_t <std::is_same<decltype (std::declval <Ct>().begin ()), typename Ct::iterator>::value && std::is_same<decltype (std::declval <Ct>().end ()), typename Ct::iterator>::value> * = nullptr > std::basic_ostream<Ch, Tr> &operator <<(std::basic_ostream<Ch, Tr> &os, const Ct &x) { if (x.begin () == x.end ()) return os; for (auto it = x.begin (); it != x.end () - 1 ; ++it) os << *it << ' ' ; os << x.back (); return os; } using namespace std;namespace MODINT {constexpr int64_t safe_mod (int64_t x, int64_t m) { return (x %= m) < 0 ? x + m : x; } constexpr std::pair<int64_t , int64_t > invgcd (int64_t a, int64_t b) { if ((a = safe_mod (a, b)) == 0 ) return {b, 0 }; int64_t s = b, m0 = 0 ; for (int64_t q = 0 , _ = 0 , m1 = 1 ; a;) { _ = s - a * (q = s / a); s = a; a = _; _ = m0 - m1 * q; m0 = m1; m1 = _; } return {s, m0 + (m0 < 0 ? b / s : 0 )}; } struct Barrett_ { uint32_t m_; uint64_t im; constexpr explicit Barrett_ (uint32_t m = 998244353 ) : m_(m), im((uint64_t)(-1 ) / m + 1 ) { } constexpr uint32_t umod () const { return m_; } constexpr uint32_t mul (uint32_t a, uint32_t b) const { uint64_t z = a; z *= b; uint64_t x = (uint64_t )(((__uint128_t )z * im) >> 64 ); uint32_t v = (uint32_t )(z - x * m_); return v + (m_ <= v ? m_ : 0 ); } } bt_; template <ptrdiff_t ID = -1 >class DyMint { using self = DyMint<ID>; protected : uint32_t v_; public : constexpr static uint32_t mod () { return bt_.umod (); } constexpr static void set_mod (uint32_t m) { assert (1 <= m); bt_ = Barrett_ (m); } constexpr static self raw (uint32_t v) { self x; x.v_ = v; return x; } constexpr DyMint () : v_(0 ) { } template <class T , std::enable_if_t <std::is_integral<T>::value && std::is_signed<T>::value> * = nullptr > constexpr DyMint (T v): DyMint () { int64_t x = (int64_t )(v % (int64_t )mod ()); v_ = (uint32_t )(x + (x < 0 ? mod () : 0 )); } template <class T , std::enable_if_t <std::is_integral<T>::value && std::is_unsigned<T>::value> * = nullptr > constexpr DyMint (T v): v_ ((uint32_t )(v % mod ())) {} friend std::istream &operator >>(std::istream &is, self &x) { int64_t xx; is >> xx; xx %= mod (); x.v_ = (uint32_t )(xx + (xx < 0 ? mod () : 0 )); return is; } friend std::ostream &operator <<(std::ostream &os, const self &x) { return os << x.v_; } constexpr const uint32_t &val () const { return v_; } constexpr explicit operator uint32_t () const { return val (); } constexpr uint32_t &data () { return v_; } constexpr self &operator ++() { if (++v_ == mod ()) v_ = 0 ; return *this ; } constexpr self &operator --() { if (!v_) v_ = mod (); --v_; return *this ; } constexpr self operator ++(int ) { self result = *this ; ++*this ; return result; } constexpr self operator --(int ) { self result = *this ; --*this ; return result; } constexpr self &operator +=(const self &rhs) { v_ += rhs.v_; if (v_ >= mod ()) v_ -= mod (); return *this ; } constexpr self &operator -=(const self &rhs) { v_ -= rhs.v_; if (v_ >= mod ()) v_ += mod (); return *this ; } constexpr self &operator *=(const self &rhs) { v_ = bt_.mul (v_, rhs.v_); return *this ; } constexpr self &operator /=(const self &rhs) { return *this = *this * inverse (rhs); } constexpr self operator +() const { return *this ; } constexpr self operator -() const { return self () - *this ; } constexpr friend self pow (self x, uint64_t y) { self res (1 ) ; for (; y; y >>= 1 , x *= x) if (y & 1 ) res *= x; return res; } constexpr friend self inverse (const self &x) { auto &&_ = invgcd (x.v_, self::mod ()); if (_.first != 1 ) throw std::runtime_error ("Inverse not exist" ); return _.second; } constexpr friend self operator +(self lhs, const self &rhs) { return lhs += rhs; } constexpr friend self operator -(self lhs, const self &rhs) { return lhs -= rhs; } constexpr friend self operator *(self lhs, const self &rhs) { return lhs *= rhs; } constexpr friend self operator /(self lhs, const self &rhs) { return lhs /= rhs; } constexpr friend bool operator ==(const self &lhs, const self &rhs) { return lhs.v_ == rhs.v_; } constexpr friend bool operator !=(const self &lhs, const self &rhs) { return lhs.v_ != rhs.v_; } }; } using MODINT::DyMint;using dmint = DyMint<>;auto solve ([[maybe_unused]] int t_ = 0 ) -> void { u32 n, mod; cin >> n >> mod; dmint::set_mod (mod); vc<dmint> fact (n * 3 + 1 ) , inv_fact (n * 3 + 1 ) ; fact[0 ] = 1 ; for_(i, 1 , n * 3 ) fact[i] = fact[i - 1 ] * i; inv_fact[n * 3 ] = 1 / fact[n * 3 ]; rfor_ (i, n * 3 , 1 ) inv_fact[i - 1 ] = inv_fact[i] * i; dmint ans = 0 ; ans += fact[n * 3 ] * 3 ; ans -= fact[n * 2 ] * inv_fact[n] * fact[n * 2 ] * 2 ; for_(i, 0 , n) { auto _ = fact[n] * inv_fact[i] * inv_fact[n - i] * fact[n]; ans += _ * _ * fact[n * 2 - i] * inv_fact[n - i]; } ans -= fact[n * 2 ] * 2 - fact[n]; ans -= 1 ; cout << ans.data (); } int main () { std::ios::sync_with_stdio (false ); std::cin.tie (nullptr ); int i_ = 0 ; solve (i_); return 0 ; }
F - Wonderful Jump You are given an array of positive integers \(a_1,a_2,\ldots,a_n\) of length \(n\)
In one operation you can jump from index \(i\) to index \(j\) (\(1 \le i \le j \le n\) ) by paying \(\min(a_i, a_{i + 1}, \ldots, a_j) \cdot (j - i)^2\) eris
For all \(k\) from \(1\) to \(n\) , find the minimum number of eris needed to get from index \(1\) to index \(k\)
The first line contains a single integer \(n\) (\(2 \le n \le 4 \cdot 10^5\) )
The second line contains \(n\) integers \(a_1,a_2,\ldots a_n\) (\(1 \le a_i \le n\) )
Output Output \(n\) integers — the \(k\) -th integer is the minimum number of eris needed to reach index \(k\) if you start from index \(1\)
Examples output output output output Note In the first example:
From \(1\) to \(1\) : the cost is \(0\) , From \(1\) to \(2\) : \(1 \rightarrow 2\) — the cost is \(\min(2, 1) \cdot (2 - 1) ^ 2=1\) , From \(1\) to \(3\) : \(1 \rightarrow 2 \rightarrow 3\) — the cost is \(\min(2, 1) \cdot (2 - 1) ^ 2 + \min(1, 3) \cdot (3 - 2) ^ 2 = 1 + 1 = 2\) In the fourth example from \(1\) to \(4\) : \(1 \rightarrow 3 \rightarrow 4\) — the cost is \(\min(1, 4, 4) \cdot (3 - 1) ^ 2 + \min(4, 4) \cdot (4 - 3) ^ 2 = 4 + 4 = 8\)
代码参考
Show code
CodeForces_1768F view raw 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 #include <bits/stdc++.h> template <class Tp >using vc = std::vector<Tp>;struct CustomHash { static constexpr uint64_t splitmix64 (uint64_t x) { x += 0x9e3779b97f4a7c15 ; x = (x ^ (x >> 30 )) * 0xbf58476d1ce4e5b9 ; x = (x ^ (x >> 27 )) * 0x94d049bb133111eb ; return x ^ (x >> 31 ); } static constexpr size_t append (size_t x, size_t y) { return x ^ (y >> 1 ) ^ ((y & 1 ) << (sizeof (size_t ) * 8 - 1 )); } size_t operator () (uint64_t x) const { static const uint64_t FIXED_RANDOM = std::chrono::steady_clock::now ().time_since_epoch ().count (); return splitmix64 (x + FIXED_RANDOM); } template <class Tp , class Up > size_t operator () (std::pair<Tp, Up> const &p) const { return append ((*this )(p.first), (*this )(p.second)); } template <typename ... Ts> size_t operator () (std::tuple<Ts...> const &tp) const { size_t ret = 0 ; std::apply ( [&](Ts const &...targs) { ((ret = append (ret, (*this )(targs))), ...); }, tp); return ret; } template < class Tp , std::enable_if_t <std::is_same<decltype (std::declval <Tp>().begin ()), typename Tp::iterator>::value && std::is_same<decltype (std::declval <Tp>().end ()), typename Tp::iterator>::value> * = nullptr > size_t operator ()(Tp const &tp) const { size_t ret = 0 ; for (auto &&i : tp) ret = append (ret, (*this )(i)); return ret; } }; using i64 = int64_t ;#define for_(i, l, r, vars...) \ for (std::make_signed_t<decltype(l + r)> i = (l), i##end = (r), ##vars; \ i <= i##end; \ ++i) #define rfor_(i, r, l, vars...) \ for (std::make_signed_t<decltype(r - l)> i = (r), i##end = (l), ##vars; \ i >= i##end; \ --i) #define foreach_ref_(i, container) for (auto &i : (container)) #define read_var_(type, name) \ type name; \ std::cin >> name #define read_container_(type, name, size) \ type name(size); \ foreach_ref_(i, name) std::cin >> i template <class Tp >constexpr auto chkmin (Tp &a, Tp b) -> bool { return b < a ? a = b, true : false ; } template <class Tp >constexpr auto chkmax (Tp &a, Tp b) -> bool { return a < b ? a = b, true : false ; } template <class Tp >constexpr auto ispow2 (Tp i) -> bool { return i && (i & -i) == i; } #define TPL_SIZE_(Tuple) std::tuple_size_v<std::remove_reference_t<Tuple> > namespace tuple_detail_ {template <std::size_t Begin, class Tuple , std::size_t ... Is>constexpr auto subtuple_impl_ (Tuple &&t, std::index_sequence<Is...>) { return std::make_tuple (std::get <Is + Begin>(t)...); } template <class Tuple , class BinOp , std::size_t ... Is>constexpr auto apply2_impl_ (BinOp &&f, Tuple &&lhs, Tuple &&rhs, std::index_sequence<Is...>) { return std::make_tuple ( std::forward<BinOp>(f)(std::get <Is>(lhs), std::get <Is>(rhs))...); } } template <std::size_t Begin, std::size_t Len, class Tuple >constexpr auto subtuple (Tuple &&t) { static_assert (Begin <= TPL_SIZE_ (Tuple) && Len <= TPL_SIZE_ (Tuple) && Begin + Len <= TPL_SIZE_ (Tuple), "Out of range" ); return tuple_detail_::subtuple_impl_ <Begin>(t, std::make_index_sequence <Len>()); } template <std::size_t Pos, class Tp , class Tuple >constexpr auto tuple_push (Tp &&v, Tuple &&t) { static_assert (TPL_SIZE_ (Tuple) > 0 , "Pop from empty tuple" ); return std::tuple_cat (subtuple <0 , Pos>(t), std::make_tuple (v), subtuple <Pos, TPL_SIZE_ (Tuple) - Pos>(t)); } template <class Tp , class Tuple >constexpr auto tuple_push_front (Tp &&v, Tuple &&t) { return tuple_push <0 >(v, t); } template <class Tp , class Tuple >constexpr auto tuple_push_back (Tp &&v, Tuple &&t) { return tuple_push <TPL_SIZE_ (Tuple)>(v, t); } template <std::size_t Pos, class Tuple >constexpr auto tuple_pop (Tuple &&t) { static_assert (TPL_SIZE_ (Tuple) > 0 , "Pop from empty tuple" ); return std::tuple_cat (subtuple <0 , Pos>(t), subtuple <Pos + 1 , TPL_SIZE_ (Tuple) - Pos - 1 >(t)); } template <class Tuple >constexpr auto tuple_pop_front (Tuple &&t) { return tuple_pop <0 >(t); } template <class Tuple >constexpr auto tuple_pop_back (Tuple &&t) { return tuple_pop <TPL_SIZE_ (Tuple) - 1 >(t); } template <class Tuple , class BinOp >constexpr auto apply2 (BinOp &&f, Tuple &&lhs, Tuple &&rhs) { return tuple_detail_::apply2_impl_ ( f, lhs, rhs, std::make_index_sequence <TPL_SIZE_ (Tuple)>()); } #define OO_PTEQ_(op) \ template <class Tp, class Up> \ constexpr auto operator op(std::pair<Tp, Up> lhs, \ const std::pair<Tp, Up> &rhs) { \ return std::pair<Tp, Up> {lhs.first op rhs.first, \ lhs.second op rhs.second}; \ } \ template <class... Ts> \ constexpr auto operator op(std::tuple<Ts...> const &lhs, \ std::tuple<Ts...> const &rhs) { \ return apply2([](auto &&l, auto &&r) { return l op r; }, lhs, rhs); \ } \ template <class Tp, class Up> \ constexpr std::pair<Tp, Up> &operator op##=(std::pair<Tp, Up> &lhs, \ const std::pair<Tp, Up> &rhs) { \ lhs.first op## = rhs.first; \ lhs.second op## = rhs.second; \ return lhs; \ } \ template <class... Ts> \ constexpr auto operator op##=(std::tuple<Ts...> &lhs, \ const std::tuple<Ts...> &rhs) { \ return lhs = lhs op rhs; \ } OO_PTEQ_ (+)OO_PTEQ_ (-)OO_PTEQ_ (*)OO_PTEQ_ (/)OO_PTEQ_ (%)OO_PTEQ_ (&)OO_PTEQ_ (|)OO_PTEQ_ (^)OO_PTEQ_ (<<)OO_PTEQ_ (>>)#undef OO_PTEQ_ #undef TPL_SIZE_ template <class Tp , class Up >std::istream &operator >>(std::istream &is, std::pair<Tp, Up> &p) { return is >> p.first >> p.second; } template <class Tp , class Up >std::ostream &operator <<(std::ostream &os, const std::pair<Tp, Up> &p) { return os << p.first << ' ' << p.second; } template <typename ... Ts>std::istream &operator >>(std::istream &is, std::tuple<Ts...> &p) { std::apply ([&](Ts &...targs) { ((is >> targs), ...); }, p); return is; } template <typename ... Ts>std::ostream &operator <<(std::ostream &os, const std::tuple<Ts...> &p) { std::apply ( [&](Ts const &...targs) { std::size_t n{0 }; ((os << targs << (++n != sizeof ...(Ts) ? " " : "" )), ...); }, p); return os; } template < class Ch , class Tr , class Ct , std::enable_if_t <std::is_same<decltype (std::declval <Ct>().begin ()), typename Ct::iterator>::value && std::is_same<decltype (std::declval <Ct>().end ()), typename Ct::iterator>::value> * = nullptr > std::basic_ostream<Ch, Tr> &operator <<(std::basic_ostream<Ch, Tr> &os, const Ct &x) { if (x.begin () == x.end ()) return os; for (auto it = x.begin (); it != x.end () - 1 ; ++it) os << *it << ' ' ; os << x.back (); return os; } const i64 INF64 = 0x3f3f3f3f3f3f3f3f ;using namespace std;auto solve ([[maybe_unused]] int t_ = 0 ) -> void { read_var_ (int , n); read_container_ (vc<i64>, a, n); const i64 lim = 500 ; vc<i64> dp (n, INF64) ; dp[0 ] = 0 ; for_(i, 0 , n - 1 ) { rfor_ (j, i - 1 , max (i64 (0 ), i - lim - 1 )) chkmin (dp[i], dp[j] + min (a[i], a[j]) * (i - j) * (i - j)); if (a[i] < lim) { rfor_ (j, i - 1 , 0 ) { chkmin (dp[i], dp[j] + min (a[i], a[j]) * (i - j) * (i - j)); if (a[j] <= a[i]) break ; } for_(j, i + 1 , n - 1 ) { chkmin (dp[j], dp[i] + min (a[i], a[j]) * (i - j) * (i - j)); if (a[j] <= a[i]) break ; } } } cout << dp; } int main () { std::ios::sync_with_stdio (false ); std::cin.tie (nullptr ); int i_ = 0 ; solve (i_); return 0 ; }